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1.0 INTRODUCTION

The recent profound shift in the global balance of power in favor of the United States of America

has had major repercussions on Strategic Defense Initiative (SDI) planning. In particular, the

focus has shifted from the provision of protection for the United States against a massive raid,

involving possibly thousands of reentry vehicles, to defense against a much more limited attack

which could now, however, be launched from any part of the world. Additionally, the United

States is seeking to protect its forces and allies overseas, and in the task of missile detection and

tracking, allowance must now be made for trajectories which can begin and end in almost any

inhabited area of the globe. Thus SDI demands on surveillance technology have been significantly

expanded [1].

Space-based imaging systems will play a vital role in the surveillance task. In the detection,

discrimination and subsequent tracking of hostile objects, image quality in particular will be of
crucial importance. Considerations of size, weight, and cost will, however, impose strict limits on
the unaided performance of the optical hardware. In addition, the sensor's operational capabilities

may be impaired by system aberrations and degradations which may be inherent (as in the case of

the Hubble telescope), induced by the stresses of launch or thermal fluctuations in orbit, or simply

the result of aging processes in the space environment. If these defects can be properly

characterized, however, newly developed algorithms can be used to compensate for them and thus

restore the image. The resolving power of the system can also be extended in this way.

In this report a description is first given of a typical scenario. The potential imaging problems are

then examined, the mathematical background is discussed, and the innovative algorithms which

have been developed for correcting and enhancing the performance of the imaging sensor are

described. • Some results are included from current simulations based on the parameters of the

typical scenario. The complexity involved in the calculations is assessed, together with the

associated storage requirements. Attention is drawn to wider applications of the techniques

developed and knowledge gained in the course of this work, and finally recommendations are

made concerning the design attributes of an orbiting sensor network appropriate to the SDIO

mission.
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2.0 THE SCENARIO AND THE PROBLEM

2.1 The Defensive Task

Orbiting rings of small, lightweight surveillance satellites (the so-called 'brilliant eyes') provide the
surveillance function from high earth orbit. They communicate among themselves, or via a
command and control system to produce a multi-sensor map of the target area. The number,
nature and trajectories of objects which are deemed to be potential threats, in the atmosphere or in
space, are identified. Compact guided missiles (the so-called 'brilliant pebbles') are on stand-by

and are dispatched by the command and control system to intercept specific objects among the

group of threats. The missiles destroy or damage their targets through high-speed impact.

The optical requirements for the two groups of satellites (the 'eyes' and the 'pebbles') differ as a

consequence of their intended functions. A pebble missile will be initially directed towards an

intended target, which may be moving at a very high relative speed, and must be capable of

acquiring and locking-on to it as rapidly as possible. Moreover, the missile must carry out these

operations in a potentially very cluttered environment, and be capable of making critical final
corrections to ensure success. Thus simple quadrant detectors and centroid techniques would not
be appropriate except very near the target. The complexity of the pebble's sensor system can be
greatly reduced by designing it to receive initial orientation instructions from the control center,
then to achieve lock-on and make course corrections autonomously. The eyes, on the other hand,
must be capable of surveying a wide field of view and of achieving high-resolution imaging to
provide the information for detection, identification and tracking. The computational techniques

discussed in this document are designed to enhance images of the type obtained by an eye, and
would be applicable also to a pebble's optical system, if on-board resources permitted.

2.2 Typical Diffraction-Limited Image Properties

On the basis of certain assumptions about the characteristics of the optical system and of the

target, we can make predictions of its performance. We shall estimate system resolution
capabilities, fields of view and available image acquisition time for a moving target, and photon
flux into the image.
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We make the following assumptions for system parameters:

Wavelength . = 10 Am

Aperture d = 250 mm

Focal length f = 1250 mm (F/5 system)

Pixel width p = 25 prm
Range to target z = 2000 km

The range quoted is a maximum for an orbital height of 700 km.

Then:

Rayleigh resolution length at image plane 1.22 Xffd = 61 pm

Resolvable separation at range z 1.22 )z/d = 98 m

Airy disc diameter 2.44 Xffd = 122 pm.
Pixels across Airy disc = 2.44 Affdp • 5

Pixel angular field of view (FOV) p/f = 20grad

FOV at 2000 km 40 m

For a 1000-element linear staring array:

Total angular FOV = 20 mrad x 20 prad

Linear FOV at 2000 km = 40 km x 40 m

In order to calculate the maximum time available for acquisition of a single image, we need an
estimate of the maximum velocity of the object across the field of view. For re-entrant ballistic
trajectories, we shall assume that this is of the order of the orbital speed for a low earth orbit, and
use a value of 7 km rs. Then the image of a target at 2000 km range crosses one pixel, having a
40 m FOV, in approximately 6 ms. and the resolvable distance of 98 m in 14 ms. A

reasonable image acquisition time might be half of this; i.e., 7 ms.
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We now calculate the photon flux at the detector for a typical target.

Planck's formula for the power radiated per unit area, AIv, within the frequency interval Av, by

a black body at temperature T is [2]

AI = 2nh u3Av
c2 {exp(hu / kT)j - I

where h is Planck's constant (6.6 x 10-34 Js), k is Boltzman's constant (1.38 x 10-23 JK-') and

c is the velocity of light (3 x 108 ms-i).

For X = 10 iun, u = c/X = 3 x 1013 s1.

Suppose the body is radiating at 300 K and that the radiation is detected over a bandwidth of 9-

11 1Am. Then the corresponding frequency increment, Au, is 0.6 x 1013 s-r and from Planckes
formula, the power per unit area AM0 is approximately 63 W n-2.

Suppose further the target is radiating into 4% steradians from an area of I m2 . Then the

radiated power into the 250 mm aperture is approximately 6 x 10-14 W. The energy of a photon

at 10 pa is 2 x 10-20 J. Hence the photon flux through the aperture is 3 x 106 s-1 . For an

acquisition time of 7 ms, the number of photons contributing to the image will be 21 x 103. If

the target is essentially a point source, these photons are distributed over the point spread

function of the system. About 86% of this energy goes into the central lobe, the Airy disc, which

covers about 25 pixels. Hence the average energy per pixel in the Airy disc is about 720 photons.

The center pixel would in fact contain about 3800 photons.

Poisson statistics govern the energy distribution in the image around its expected value, and the

signal-to-noise ratio (SNR) is given by the square root of the mean signal value in photons. For

the average pixel energy of 720 photons, the corresponding SNR is 27; for the center pixel its

value is about 61.
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2.3 Deficiencies in the Sensor System

In the absence of any other degrading effects, the performance of an optical system is restricted
ultimately by the effects of diffraction. The finite extent of the exit pupil imposes a fundamental
upper limit on the system's spatial-frequency response. It is unlikely, however, that the image
quality of an operational space-based system will approach the theoretical limit very closely at any
time. It is possible that the design or construction will be flawed, as in the case of the Hubble
telescope, through defective manufacture, assembly or quality assurance procedures. In addition,
it is highly likely that the sensor will become degraded during the mission lifetime; faults may be
induced by the stresses of launch and deployment, and aging of the equipment (caused, for
example, by radiation or thermal effects) will almost certainly compromise component
performance. The detector itself will impose limitations; for example, where a CCD array is used,
information is lost in the inter-pixel areas, and image energy is integrated over the active area of
each pixel. Other degrading factors will include defective pixels, noise in the CCD array and
electronic subsystems, and the possibly obtrusive contributions of the earth-space background.
Success in detection, identification and subsequent tracking will depend critically on the levels of
noise and clutter in the images, and robustness is of fundamental importance in any image-
processing scheme. The methods of image restoration considered here were originally aimed at
achieving performance beyond the conventional diffraction limit [3, 4], but are in fact capable of
compensating simultaneously or separately for aberrations induced by the optical components and
for the limitations of the detector. They were designed to be robust and also possess valuable
noise-suppression properties.



3.0 THE SOLUTION

3.1 Mathematical Background

The initial assumption is made that the effect of the optics can be described as a possibly time- and

shift-variant blurring of the image due to diffraction and aberrations. Thus, in general, the point
spread function will change across the sensor field of view. It can be assumed, however, that at
any given time the point spread function is effectively constant, i.e., shift-invariant, over some
localized area, and then undergoes a discrete change into neighboring areas. This is the case with
the Hubble telescope. It will also be assumed that the set of point spread functions is known or

can be measured. Under these circumstances the point spread function is said to be locally shift-
invariant, and the image is created by the summation across the entire field of view of the set of
localized point spread functions convolved with objects in the corresponding parts of the field.
Mathematically, a convolution can be written as a Fredholm integral equation of the first kind.
The solution of this class of equation is known to be ill-posed and numerically difficult [5, 6].

Additionally, it is anticipated that the image will be spatially sampled by a solid-state sensor which
introduces spatial integration, discretization and associated noise processes. Thus, the Fredholm
integral sum representing the continuous image can be rewritten as a matrix equation, to which
modem signal processing techniques derived from advanced linear algebra can be applied. In
general, the presence of the sensor noise takes the measured image out of the span of the columns
of the kernel matrix, which is typically highly ill-conditioned; additional techniques derived from
regularization theory are required to restore stability to the reconstruction. By introducing a
suitable error criterion, images can be constructed which are, in terms of the chosen criterion,
closer to the undistorted geometrical image of the object than the detected image data.

The point spread function of a well designed optical system is normally approximately invariant

over large segments of the image plane. Note that imaging performance (and therefore the point
spread function) commonly changes over relatively wide fields of view; for example, the
resolution of typical photographic lenses is markedly less near the edge of the field than near the
center. However, over some limited region the point spread function will be essentially shift
invariant, although this is not mathematically necessary, and one may speak of an effective point
spread function over this region with a transfer-function band-limit determined by the exit pupil of

the system. System aberrations and pixel integration serve to reduce the system response within

this passband.
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To the extent permitted by the noise in the image, these in-band effects are relatively

straightforward to remove for shift invariant systems: a typical approach would be to employ a

Wiener-type inverse filter. However, detector pixellation and the finite aperture of any system set

resolution limits not easily overcome, and a method for achieving spectral extrapolation has to be

devised.

The spatial spectrum of the object is the Fourier transform of its amplitude, in the coherent case,

or its intensity, in the incoherent case. If the object is known to be of finite extent, its Fourier

transform is an analytic function, and the out-of-band part of the spectrum can in principle be fully

recovered by analytic continuation [7] of the image slpectrum after removal of any in-band

distortion. The inverse Fourier transform of this extended spectrum would then yield a perfect

image of the original object. Equivalently, one could attempt to solve directly the equation

describing the imaging process. This, however, involves the inversion of an ill-conditioned

matrix, and the restoration process is intrinsically unstable, even small amounts of noise rendering

the results meaningless. These difficulties may be surmounted by applying the methods of

regularization theory [8], developed to deal with ifl-posed problems of this type, and the

procedures which have evolved in the course of this SDIO/ISTO program are based on

constrained least-squares methods in which a regularization parameter plays an essential role.

Stability in the restored image, which is computed via the regularized pseudoinverse of the

imaging matrix (see Appendix A), is controlled by this parameter. Its optimal value depends on

the signal-to-noise ratio in the data. If it is not possible to select this optimum value from prior

knowledge of the system characteristics and the object scene, several techniques are available for

its estimation from the data themselves [9, 10]. Faster computation of the estimate is possible if

the singular value decomposition of the imaging matrix is already available.

An efficient algorithm should exploit known properties of the target as much as possible. In the

midcourse phase the targets of interest radiate thermally at approximately 300 K and the images

are real, nonnegative distributions. The re-entry vehicles are relatively small, presenting an area

of& say, 0.25 n 2 , and are spinning, whereas the bus is larger, with an area of several square meters.

All targets are in ballistic trajectories. The extent of the targets is much smaller at most ranges

than the resolution limit of the optics described in Section 2.2, so that they typically act as point

sources.
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Effective image restoration requires as Pood an estimate as possible of the imaging system
characteristics, careful design of the ai- irithm, appropriate stabilization of the algorithm against
noise, and high computational efficiency. The algorithms which have been developed, and these
which are still under development, differ primarily in the extent to which the target characteristics
can be identified and incorporated into the algorithm, the dominant noise mechanisms in the
imaging process, and the degree to which the computational efficiency can be optimized.

The most straightforward approach to obtaining the necessary imaging system characteristics for
image enhancement would be to perform pre-launch measurements on a test rig. However,
allowance should be made for the possibility of launch misalignments and in-orbit changes
occurring see Section 2.3. This can be done in two ways. The first is to modify the algorithms
to allow for uncertainty in the calibration data as well as noise in the image data; the algorithms
then depend on total' least-squares methods [11]. The second is to test the point spread function
periodically and update the system data. In this context it may be noted that, if the eyes are
capable of active surveillance, it may be possible to use the light source in one to calibrate
another.

3.2 Image Restoration Algorithms

Reconstruction algorithms can be divided into two major classes: those for which the object can
be allowed to take both positive and negative values, and those for which non-negativity is an
important constraint. Algorithms in which non-negativity is imposed on the reconstruction are
inevitably iterative and require greater computational effort to perform the minimization. The
lower computational burden of the non-iterative form of the algorithms is available if non-
negativity does not have to be imposed; this may be the case, for example, for relatively bright
objects which stand out clearly from their surroundings. For a group of small isolated objects, on
the other hand, use of the non-negativity criterion can be a powerful means of improving object
location. Thus the methods, which also provide smoothed numerically stable solutions to the
matrix equation, are well-suited for SDI space-based surveillance applications. Algorithms have
been constructed for a number of specific purposes, including the correction of optical
aberrations, for achieving resolution beyond the diffiaction limit of the optical system and for the
recovery of apparently lost sub-pixel detail. The performance of some of these algorithms will be
illustrated with simulated and laboratory images. (See also Appendix B.) Preliminary studies
have also been made of image data acquired during space launches by the ISTO Experimental
Facility at Cape Canaveral; further analysis awaits more accurate information on the system point
spread function.
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The mathematical formalism underlying these restoration algorithms is given in Appendix A. The

algorithms all incorporate regularization to counteract the destabilizing effects of noise, and

require an estimate of the object support (i.e., the spatial region within which the target is non-

zero). In the case of the non-negative reconstruction algorithm, this estimate is refined from one

iteration to the next.

(i) Direct reccv!struction from the regularized pseudo inverse.

This algorithm is wMidely applicable. It can be applied to finely sampled, nearly perfect images or

to highly aberrated shift-variant images in which pixellation effects are clearly evident. The

computatiPn is direct - i.e., non-iterative - and the resulting solution can exhibit both positive and
negative values. The reconstruction is bounded by the estimate of the object support and high
resolution can be achieved. This method can give particularly good results when the unresolved

targets of interest lie within a limited dynamic range. Weighting can be incorporated to reflect the
level of confidence in the data and varying degrees of smoothness can be enforced on the

reconstruction.

(a) Unweighted reconstruction

This practical example will demonstrate the use of the regularized pseudoinverse for image

reconstruction with the identity matrix as the constraint operator (see Appendix A). Three
small incoherently-illuminated apertures were imaged onto a CCD array and the optical

geometry arranged so that the images of these objects all lay within one half the Rayleigh

distance of each other. It can be seen from Fig. 1 that the individual images are
unresolved. A good estimate of the system point spread function is essential for effective
restoration, and Fig. 2 shows the result of averaging 16 estimates of the psf obtained with
a point light source, followed by filtering in the Fourier transform plane to eliminate out-
of-band noise. The imaging aperture was constructed with a pair of crossed slits; the psf
was therefore a product of two sinc functions. Fig. 3 is the computed reconstruction of
the target field. The objects are now clearly resolved. Finally, Fig. 4 shows the image

obtained with a large-aperture lens in place of the crossed slits. Contour plots of Figs. 3
and 4 show that the reconstructed images are in their correct relative locations.
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(b) Weighted reconstruction

Weighting can be introduced into the calculations in order, for example, to discriminate
against bad pixels in the array, or to adjust the relative significance in the computation of
bright and faint features in the target area. In the general case, the weight matrix is
derived from a covariance matrix which expresses information on the correlations between
the statistical errors in the image data values, as well as on their magnitude. If the pixel
weightings are uncorrelated, the weight matrix is diagonal. This will be the case for an
image in which fluctuations ('shot noise') due to the Poisson statistics of the detection
process are the dominant noise mechanism.

(ii) Reconstruction of subpixel detail from combinations of defocused images

In addition to intrinsic noise, a CCD detector degrades the image information in two ways. First,
there is necessarily a modest amount of averaging performed over the active area of the pixel, and
second, the pixel structure imposes a spatial sampling rate. When dealing with CCD data sampled
at the Nyquist rate of the imaging system the degradation caused by the detector is not great.
Practically speaking, when imaging thermal (incoherent) radiation one requires approximately 5
samples across the point spread function core to achieve the Nyquist rate. When the optical
design results in coarser sampling (for example, when the point spread function is matched to the
pixel size) the detector itself severely limits the spatial resolution attainable. Noise from
background sources or the detector elements themselves now limits the useful information to a
relatively few pixels. As a consequence, although estimates can be made of the centroid of
isolated point targets to subpixel precision, a single image cannot be made to yield detailed
information about more complex object fields.

The discussion in Section 3.1 of the image restoration problem can be generalized and a method

devised for extracting subpixel detail from a small number of independent images. These can be
generated in a number of ways, such as by simultaneously combining defocused and/or laterally-
shifted images of the same cluster of targets. One could also use time-series data, although the
evolution of the image of a moving object over time may limit the resolution obtainable.
Alternatively one could scan an image with a 1-D array so that high sampling rates are possible in
the scan direction, and relatively low rates in the array direction. It is assumed that a pixel may
contain images of more than one target, which poses a more difficult problem than that of locating
the position of a single target with sub-pixel accuracy. A combination of correctly chosen
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defocused images has been found to produce superior results to a combination of translated
images [12]. The signal-to-noise requirements are more demanding than when pixel size is
assumed to represent the fundamental limit on resolution.

(iii) Reconstruction with enforced non-negativity

Passive thermal imaging systems yield non-negative images, and this constraint may be important
if the target area is relatively faint. Greater resolution, suppression of ringing and larger dynamic
ranges are possible when a non-negativity constraint is imposed. It can be incorporated by
iterating the computation a limited number of times; pixels with negative content can be
eliminated after each iteration or discriminated against by weighting. In this manner one can
adaptively obtain a very tight target support constraint with little a-priori information. Achieving
tight support constraints gives the greatest degree of spectral extrapolation, and therefore
resolution. Indeed, for small, localizable targets, the support estimate contains most of the
desired targeting information.

Figs. 5-9 illustrate the performance of the non-negative algorithm in which negative pixels are
eliminated at each iteration, in combination with the method for recovering sub-pixel detail
described above. Fig. 5 shows the object field superimposed on nine pixels of a simulated CCD
device, and Figs. 6 and 7 their images on the central seven by seven array at varying degrees of
defocus. These four images are combined in sequence, and a composite matrix formed from the
matrices representing the corresponding imaging operators. An iterative computation using the
regularized pseudoinverse of this matrix, with non-negativity enforced at each step, was then
carried out. The result for the 'noiseless' case is shown in Fig. 8. Note that the optimum value of
the regularization parameter is non-zero even in the absence of added noise; computer roundoff
error alone is sufficient to induce instability in the reconstruction. It can be seen that the
individual sources have been correctly recovered in number and position. Fig. 9 shows the result
obtained when Gaussian noise with a standard deviation of 5% of the peak pixel value was added
to the data. One or two small artifacts have appeared and there is some blurring, but the
individual targets are clearly identifiable.
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Figure 6. Images at 0 and 0.8 Waves Defocus
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FIgure 7. Images at 1.6 and 2.4 Waves Defocus
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3.3 Computational Aspects

An effective image restoration algorithm for SDI applications must not only exploit all available
information about the target, it must also be well matched to the computational hardware and be
carefully implemented to achieve optimum performance in near-real time. In implementing the
algorithms described above, two difficulties become apparent as image size grows. First, the
sheer number of computations can be very large, resulting in long computing times. Second, the
matrix sizes in two dimensions quickly become overwhelmingly large. For example, a 64 x 64
image reconstructed into 64 x 64 elements has an imaging operator matrix of size 642 x 642, or
16.777 x 106 elements. For single precision operation (4 bytes/element), this results in 67 Mbytes
of data (134 Mbytes with double precision). Handling such large data sets for modest images
makes the high performance techniques described earlier challenging to implement even for earth-
based applications, where extensive resources are available and time may not be a factor. Thus
storage requirements and computational complexity are two aspects of algorithm implementation
which must be addressed for all but the smallest images.

3.3.1 Reducing Storage Space

There are essentially three approaches to reducing space demands. The first, limited to shift
invariant systems, is to use an iterative procedure based on the fast Fourier Transform (FFT).
One can implement the regularized pseudoinverse reconstruction, including non-negativity, in this
manner. The procedure is then a regularized form of the Gerchberg-Papoulis algorithm [13]. The
data and image sets are the same size, and only FFT's are involved. Hence each iteration is fast
and easily implemented; however, convergence is slow, and 1000 or more iterations may be
required. The relative performance of this algorithm has not been evaluated.

The second method is to implement the regularized pseudoinverse exactly by partitioning the
matrix equation into submatrices and using a sequential calculation based on smaller matrices. It
has been shown that a real speed gain is possible for the pseudoinverse, although the expression
for the regularized pseudoinverse has still to be explored. Smaller matrices are manipulated, and
if the point spread finction is shift invariant, some of the submatrices will be duplicated. Non-
negativity probably cannot be implemented in this way.

The third method is to break the problem into smaller blocks and deal with each of the blocks
independently [14]. The procedure is iterative, and potentially faster than solving the original
problem as a unit. However, one must perform additional calculations to remove edge effects
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from neighboring blocks. (The second method includes all cross-terms.) The ultimate efficiency

of this method depends on the number of iterations required.

3.3.2 Reducing Computational Complexity

Considerable effort has been devoted, in collaboration with members of NOSC stafl to

developing techniques for alleviating the potential computational burden associated with the

algorithms discussed above [15, 16]. If the image restoration matrix has to be determined for
each image, the number of operations involved in computing the restoration will be O(N6) for an
N x N image. For even modest values of N, this number will be very large; for example, if
N = 32, the number of operations is 0(109).

The entries in the imaging matrix A consist of discrete values of the system point spread
function. These elements are determined by the locations of the samples in the image plane and

the locations of the points at which the corrected values are to be determined in the reconstruction
plane. The point spread function will in general be locally shift-invariant, but change gradually

across the field of view, and it will be assumed that the instrument is fully characterized by a
stored set of calibration data. If the point spread function is also time-varying, recalibration must
be performed as often as necessary with some appropriate source; if they are suitably equipped,
one of the 'eyes' could possibly fulfill this function. Thus, for a given target area, we can assume
that the required point spread function is already available. Suppose that image size and
reconstruction support (the region within which the target objects are estimated to lie), or a
typical set of them, are known in advance. Then only a value for the regularization parameter is

required, and it is quite likely that a small discrete set of these will suffice. (It may be noted here
that truncating the singular values of A at the appropriate point can be shown to be equivalent to
incorporating a regularization parameter in the calculation [17], and may offer some advantages in
terms of parallel processing efficiency.) Then a set of restoration matrices can be precomputed

and the processing of the image reduced to a single vector-matrix multiplication involving O(N4)
operations. This can still be a daunting task; for a 100 x 100 image, 0(101) operations are
required. We therefore look for special mathematical features in the structure of the problem
which may be exploited to accelerate the computation further.

The imaging operator, from which A is derived, is a convolution for the shift-invariant system

and has natural cyclic properties; in the case of equal numbers of samples and equal sampling

intervals in image and reconstruction spaces, the matrix A is Toeplitz. Even if these conditions
are not met, A may retain much Toeplitz-like structure. The concept of displacement rank [18]
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may be used to exploit this property; the singular value decomposition of A then provides a
means for constructing approximations to the image-restoration matrix (the regularized pseudo-
inverse of A ) in the form of relatively low-order sums of triangular Toeplitz matrix products.
Fast multiplication of the image vector by the image-restoration matrix then becomes possible
[19]. Further theoretical developments have also recently appeared in the open literature [20, 21].

For the two-dimensional image, the imaging matrix A can be written as a matrix consisting of
Toeplitz sub-matrices arranged in Toeplitz order (block-Toeplitz with Toeplitz blocks). Then it
can be shown that the restoration matrix R (the regularized pseudoinverse of A ) is block-
persymmetric with persymmetric blocks. Thus it retains marked cyclic features. On the basis of
numerical experiments, it has been proposed that a circulant approximation could be made to
R, which would vastly accelerate the final computation, since FFT techniques would now
become available. Recent work [22] in this field provides supporting evidence that under certain
conditions a series expansion may exist for R in which the first term is a circulant. The real
significance of the proposal is, of course, that the essential information needed to carry out the
reconstruction is contained in a single row or column of R. A further possibility now suggests
itself, that there may be a more direct way to obtain this information than via the QR or singular-
value decomposition of A. In the most recent phase of this program, the collaborative research
between Spectron and NCCOSC has concentrated on this topic.

Displacement rank and related expansions are naturally suited to algorithm implementation on
parallel processors, and the latter has been kept constantly in mind in the course of this program.
The heavy computational demands associated with image reconstruction will be most effectively

satisfied by a judicious combination of advanced techniques of matrix algebra and a carefully-
matched parallel-processing architecture.
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4.0 WIDER APPLICATIONS

The key to the applicability, for any given task, of the algorithms discussed in this document is

that the "image" and the "object" are related by a linear transformation. Then, for a sampled data

system, the discrete representation of the image (the sensor data) and the discrete approximation

to the object will be related by a matrix. The matrix incorporates all the evolutionary processes

undergone by the information-carrying field during propagation from the object and collection,
detection and digitization by the sensor system. In the case of a conventional optical image, the
field is electromagnetic, and the transformation consists primarily of Fourier transforms; the

sensed data may be further modified, of course, by the characteristics of the detector and the
associated circuitry. Nonlinear effects, such as Poisson noise in the optical case, can also be
accommodated provided they are not so great that the assumption of a linear object-image
relationship ceases to be a reasonable approximation.

Potential applications exist in many areas of remote sensing, including tomography, synthetic
aperture radar, imaging radar, sonar, seismic prospecting, spectroscopy and system identification

and control. In the imaging radar case, for example, tomographic reconstruction of the scattering
function via the squared modulus of the transmitted signal's ambiguity function (the analog of the
optical point spread function) would yield enhanced resolution [23]. In the case of synthetic
aperture radar, the point spread function is separable and particularly efficient reconstructions of

the scattering distribution are possible. It may also be noted that missing data segments, which
are a common feature of inverse scattering problems, can be recovered with the techniques

described here.
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5.0 CONCLUSIONS AND RECOMMENDATIONS

As a result of the major geopolitical events which have recently occurred, the nature of the
ballistic missile attack threat to the United States has undergone significant change. Many
additional areas of the globe have become potential launch sites, and the defense of regions
outside the United States is now declared public policy. The surveillance function is a
fundamental component of defensive strategy, and a clear implication of these developments is
that a comprehensive network of space-based observation platforms will be needed to meet the
SDI requirements for detection, discrimination and subsequent tracking. In fulfilling the
surveillance mission, the performance of the on-board optical sensors and the quality of the

images they create will be of paramount importance.

Given adequate illumination, the performance of an optical system is limited ultimately by the
physical laws governing the phenomenon of diffraction. Further limitations can arise from design
errors, faulty construction, the stresses of launch and deployment or the effects of extended
operation in the space environment. This report has been concerned with the exploitation of
modem mathematical techniques, in combination with state-of-the-art computational technology,

to compensate for such defects and deficiencies. The feasibility of recovering target information
apparently irretrievably lost in the process of forming and capturing the image has been
demonstrated with numerous simulations as well as experimentally-derived data. As described
above, algorithms have been designed and developed for aberration correction, to achieve
resolution beyond the diffraction limit and for other specific image-enhancing purposes which
require only the provision of appropriate computing resources. Powerful techniques of linear

algebra exist, including, for example, displaced-difference expansions and circulant
approximations, which can be exploited to reduce the associated computational burdens. Further

research is needed in this area into the ranges of validity of the approximations and their most

efficient implementation.

The possible problems which may arise from the stresses of launch and deployment, from errors
of manufacture which may not be discovered until the system is in orbit and operational, and from
aging of the optical and electronic components, imply that provision for recalibration of the

optical subsystem must be made. This can most easily be accomplished using a cooperative target
equipped with a fight source, which could be another eye, if these are active. Thus

communications channels between the orbiting eyes will be needed. In addition, computation of
the modified reconstruction matrix and subsequent updating of the on-board data would be most
efficiently performed on a large ground-based computer, requiring a ground-orbit communication
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link for downloading of the calibration data and uploading of the new matrix elements. State-of-
the-art computer technology would be available for the near real-time correction of system
deficiencies on a continuing basis, thereby considerably extending the useful lifetime of the
orbiting sensor network.

It is therefore recommended that, in addition to continuation of the research into algorithm
structure and implementations, provision be made for both adequate computing resources and
appropriate sensor-to-sensor and ground-to-sensor communication links in the basic design of the
surveillance sensor system, thus making possible both the correction of image deficiencies and the
efficient updating, as necessary, of the computational data base. The benefits will include
enhanced detection, discrimination and tracking capabilities and a longer-lived, more cost-
effective defensive screen.
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REGULARIZED IMAGE RECONSTRUCTION

The task of image reconstruction belongs to the more general class of ill-posed inverse problems,

which arise in many fields besides optics - for example in radar, geophysics, tomography or the

extrapolation of band-limited signals. Suppose we are given the operator equation

Ax =y

where A : X - Y. The problem of finding the solution x, given y, is said to be well-posed if

for each y there exists a unique solution which depends continuously on the data; i.e., is stable
under small changes in the data [G]. Otherwise, the problem is ill-posed. It should be
emphasized that ill-posedness is inherent in the physical nature of the measurement process, not
the mathematical modeling of it.

Consider a typical image reconstruction problem. We suppose some object f, an element of
Hilbert space F, is imaged by a linear operator A into an element of another Hilbert space G,
and that this image is perturbed by an unknown additive noise function which may arise in either

the imaging or the observation process. The effect of the noise in practice will generally be to

displace the image g out of the range of A - there will no longer be an element of F
corresponding to g and the equation Af = g will have no solution. Clearly the problem is ill-

posed.

This difficulty of a lack of continuous dependence can be overcome by one of the various

techniques of "regularization." Essentially, the ill-posed problem is replaced by a related well-

posed one, chosen to be physically meaningful and to possess the necessary properties of

convergence and stability. Thus we may change the concept of a solution, or the Hilbert spaces

or their topologies, or the operator itself. The technique we shall use belongs to the last category.

We impose physically reasonable constraints on the permitted solutions. If . is a measure in the

norm sense of the noise in the image (norm in the appropriate Hilbert space is denoted by

I " Ly ) and if C is some constraint operator with E a known bound, we shall require that all

possible reconstructions f satisfy

Jg-Aflo < s and Cf'I1, < E
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C may be used, for example, to impose smoothness on the reconstruction or to weight the
reconstruction support. If C is the identity operator, E is a bound on the norm of the
reconstruction. We combine the constraints quadratically and minimize the functional

where 8 = 6/E 2 . Note that smaller values of 46 are equivalent to demanding greater fidelity

between the reconstruction and the data; greater values place more emphasis on the property of
the reconstruction associated with C. In the present discussion we shall take C = I. The

minimizer f, can be expressed in either of the forms

f = (A*A + plI)-' A*g

or

f = A* (AA* + 81)-' g

where A* is the operator adjoint to A. The inverses of the bracketed operators will always
exist, since the eigenvalues of the symmetric operators A *A and AA * are non-negative.

The operator, the image and the reconstruction will consist in practice of finite arrays. We shall
assume that the imaging operator has been recast (if necessary) as a two-dimensional matrix and
that f and g are vectors. The finite-dimensional approximations to the H-ilbert spaces F and G
are K'/ and A", N- and M-dimensional spaces of real or complex numbers. For matrices with
complex entries, A * becomes AH and the solution is

f =Rg, (1)

where R can take either of the forms

(AMA + ,IN)-' A'g
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or

AH(AAH + pIk)' g.

Either of these matrix expressions is referred to as the regularized pseudoinverse of A. To

facilitate analysis and gain insight into the nature of the ill-posed problem we make use of the

method of singular value decomposition (SVD). (There is also a significant gain in accuracy in

using the SVD rather than in forming AHA directly.) We write for the SVD of A

A = UZVH (2)

where

UHU = VV = wH= IM

and

S= .... o), Ž_ o0.

U consists of the N othonormalized eigenvectors u, associated with the N largest eigenvalues

of AAH, and V consists of the N orthonormalized eigenvectors v, of AHA. The ai, the
non-negative square roots of the eigenvalues of AHA, are the singular values of A.

Then, from equation (1),

fp= &•aý..., 8 ('+f), .. )Ujg (3)

Iff,=0, wehave

fo =A+g

where AX denotes the Moore-Penrose generalized inverse (familiarly called the pseudoinverse)

of A . Thus the matrix operator in equation (1) can accurately be described as a regularized

pseudoinverse of A.

The regularizing role of A6 can clearly be seen in equation (3); for zero 6, the elements of the

diagonal matrix are simply the inverses of the non-zero singular values of A and can grow

without bound as these tend toward zero.
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Weighting can be introduced into both of the spaces F and G through the definition of the inner
product, and can be used to predispose the shape of the reconstruction to some prior expectation,

or to reflect statistical information about the noise. A modified form of
equation (1), incorporating the weighting matrices, now governs the reconstruction, which with
the aid of Cholesky factorization can again be analyzed by SVD [D].
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ILLUSTRATIVE IMAGE-ENHANCEMENT PROGRAMS

A suite of operational programs based on selected image-enhancement algorithms which were

developed under this contract can be found on the floppy disk included herewith. The programs

are designed to run in the MATLAB environment on a Sun workstation. Their individual

functions are summarized below. The reconstruction procedures are based on the assumption that

the point-spread function (psi) is two-dimensional and non-separable.

A demonstration is available by typing >>startup2d. This routine generates and saves the psf and

the singular-value decomposition of the psf for the demonstration procedure. For convenience,

(sinc(x)*sinc(y)).A2 was used for the psf. This function is, in fact, separable, although the

computation is performed as if it were non-separable. Note that 'infinities' are generated in

attempting to calculate sin(O)/(O) ; these result in standard MATLAB warning messages, but have

no effect on the reconstruction.

demo2d_4 is called at the end of the startup2d routine; after the first setup run, it can be called

directly. The program then randomly constructs an object, forms its image, adds the specified

amount of noise and calculates a value for the regularization parameter using the technique of

weighted cross-validation. Finally the reconstruction is computed, using two different methods

for estimating the object support. The results are displayed in two final graphics screens (note the

<PAUSE> between them).

Reasonably accurate estimation of the object support is an important requirement if good

reconstructions of an object are to be achieved. In this demonstration, the first method for
support estimation uses a reconstruction space which is coextensive with the space over which the

object was generated. This constraint is very weak - it would be somewhat better, for example, to

use a smaller bound estimated from the image width and the psf width - and the resulting

reconstruction is often not a great improvement over the original image. However, the second

algorithm (nnrecqw2) generally performs extremely well. In estimating the reconstruction

support, this algorithm uses the fact that the object should be non-negative. It calculates the
reconstruction in 10 iterations (the succession of 2-d reconstructions mapped column-by-column

to vectors is displayed during this process). The assumption is made after each step that any

negative points must be outside the object support, and a new reconstruction is generated with the
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modified support. This procedure is most powerful in the 2-d nonseparable case, and cannot be

effectively applied to 2d-separable problems where the separability is exploited in the

computations, since changing one pixel in one of the dimensions will in that case affect an entire
row of the image.

The figures at the end of this Appendix are an example of the output of the program demo2d_4.
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Program Function Summary

2-D Mapping Algorithms

mat2vec Takes a matrix (such as an image) and maps it to a vector.

vec2mat Takes a vector and maps it to a matrix.

mul A convenient procedure for multiplying A and f, where A is the psf matrix
and f is in the form of a 2-d image. mul maps f to a vector, performs the

multiplication, and remaps A*f back into a 2-d image.

Point-Spread Function Definition

mkpsf2d_sinc Forms since2 psf matrix. This psf corresponds to a square unapodized

aperture (a slit).

mkpsf2d_sinc¢12: Forms sinc'2 psf matrix with the sampling rate in image space equal to half
that of object space. This psf corresponds to a square unapodized aperture

(a slit).

Reguized Matrix Inver

oper Forms inv(A'A + beta*I)AN using MATLAB inv function.

operpen Forms the pseudo-inverse of A from the svd of A.

opersvd Forms regularized pseudo-inverse from svd of A.

operwf Forms inverse of inv(A!A+betaWW)A', where W is specified by the user,
and weights the reconstruction norm.
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Reconstruction Algorithms

recld Calculates the regularized pseudo-inverse Q and the reconstruction. Allows

for the specification of a convex support constraint.

recld_g Calculates a reconstruction using Gaussian elimination. Allows for the

specification of a convex support constraint.

recId_s Calculates a reconstruction using svd of psf. Allows for the specification of a
convex support constraint.

nnrecgl Calculates non-negative reconstruction using Gaussian elimination. Effectively
derives support constraint in the process. The support decreases from iteration
to iteration, speeding the calculation, but there is a risk of eliminating pixels
within the true support.

nnrec_g2 Essentially the same as nnrecgl, except that the regularization parameter

decreases with each iteration.

nnrec wl Calculates a non-negative reconstruction using Gaussian elimination. Uses
inner product weighting to effectively derive a support constraint. Differs from

nnrec-g1 in that computational time per iteration is constant, but the support

can evolve over time.

nnrec w2 nnrec wl limited to 10 iterations.

Cross-Validation Algorithms

xvalidl Calculates the regularization parameter for a i-d image.

xvafid2 Calculates the regularization parameter for a block of I-d images.

xvalid2dI Calculates the cross-validation function over a specified range of the
regularization parameter for a given image.
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xvld.l Carries out the cross-validation Wahba sum using the svd of A.

xvlds Carries out a truncated sum similar to xvldI, but generally shows increased

variance in the cross-validation curve for small values of the regularization

parameter, for 1-d images (caused by insufficient data points).
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COMPUTATIONAL ASPECTS OF REGULARIZED IMAGE RECONSTRUCTION

J B Abbiss, B J Brames, and M A Fiddyt

Spectron Development Laboratories, Inc., 3535 Hyland Avenue, Costa Mesa, California 92626
tDepartment of Electrical Engineering, University of Lowell, Lowell, Massachusetts 01854

ABSTRACT

Image restoration procedures are commonly unstable in the presence of noise, and some technique
for restoring stability becomes essential. The methods of regularization theory are particularly
appropriate for this purpose. A specific type of regularized solution is introduced in the general
context of image reconstruction. A super-resolution problem is then considered from the point of
view of the computational tasks involved, with particular reference to the estimation of certain key
parameters and to implementations which increase the efficiency of the calculations. Parameter
estimation is performed by weighted cross-validation. The improvement in efficiency is achieved
through the exploitation of symmetries or cyclic properties inherent in the reconstruction operator.
The concept of displacement rank is introduced and estimates made of the computational burden
associated with various classes of regularized reconstruction matrices.

INTRODUCTION

We shall be concerned with the construction and computation of solutions to the problem of image
reconstruction from noisy, incomplete or otherwise degraded data, when the imaging operator is
known. The strongly smoothing operators which are typical of imaging or measurement systems
are associated in the reconstruction process with an extreme sensitivity to noise or distortion in the
data; small changes induced in the image can result in grossly differing reconstructions. The
immediate cause of instability in the computational process is the ill-conditioning of the matrix
representing the imaging operator.

The task of image reconstruction in fact belongs to the more general class of ill-posed inverse
problems, which arise in many fields besides optics - for example in radar, geophysics, tomography
or the extrapolation of band-limited signals. Suppose we are given the operator equation

Ax = y

where A : X --) Y. The problem of finding the solution x, given y, is said to be well-posed if for
each y there exists a unique solution which depends continuously on the data; i.e., is stable under
small changes in the data1 . Otherwise, the problem is ill-posed. It should be emphasized that ill-
posedness is inherent in the physical nature of the measurement process, not in the mathematical
modeling of it.
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Consider a typical image reconstruction problem. We suppose some object f , an element of a
Hilbert space F, is imaged by a linear operator A into an element of another Hilbert space G,
and that this image is perturbed by an unknown additive noise function which may arise in either
the imaging or the observation process. The effect of the noise in practice will generally be to
displace the image g out of the range of A - there will no longer be an element of F corresponding
to g and the equation Af = g will have no solution. Clearly the problem is ill-posed.

This difficulty of a lack of continuous dependence can be overcome by one of the various
techniques of "regularization". Essentially, the ill-posed problem is replaced by a related well-
posed one, chosen to be physically meaningful and to possess the necessary properties of
convergence and stability. Thus we may change the concept of a solution, or the Hilbert spaces or
their topologies, or the operator itself. The technique we shall use belongs to the last category.

THE REGULARIZED RECONSTRUCTION

We impose physically reasonable constraints on the permitted solutions. If s is a measure in the
norm sense of the noise in the image (norm in the appropriate Hilbert space is denoted by I I . I I H )
and if C is some constraint operator with E a known bound, we shall require that all possible
reconstructions f' satisfy2

IIg-Af'IIG<e and IICf'II-,E

C may be used, for example, to impose smoothness on the reconstruction or to weight the
reconstruction support. If C is the identity operator, E is a bound on the norm of the reconstruction.
We combine the constraints quadratically and minimize the functional

I I gAf, 112 + 0 11ICf, 112

where j3 = s2/E2. Note that smaller values of 10 are equivalent to demanding greater fidelity
between the reconstruction and the data; greater values place more emphasis on the property of the
reconstruction associated with C. In the present discussion we shall take C = I. The minimizerfo
can then be expressed in either of the forms

fp = (A*A + lI)'lA*g

or fo = A* (AA* + 0l)-Ig

where A* is the operator adjoint to A. The inverse of the bracketed operators will always exist,
since the eigenvalues of the symmetric operators A*A and AA* are non-negative.
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Weighting can be introduced into both of the spaces F and G through the definition of the inner
product, and can be used to predispose the shape of the reconstruction to some prior expectation, or
to reflect statistical information about the noise. A modified form of equation (1), incorporating the
weighting matrices, now governs the reconstruction, which with the aid of Cholesky factorization
can again be analyzed by SVD 4.

PARAMETER ESTIMATION USING WEIGHTED CROSS-VALIDATION:

To perform the computations in equation (1) or (3), we need estimates of the regularization
parameter 03 and of the region in object space (the object support) into which the reconstruction
will be made. In arriving at these estimates, the fullest use should be made of available a priori
information about the object and the data-gathering process. Weighted cross-validation 5 provides a
method for estimating a near-optimum value of the regularization parameter from the data alone.
We demonstrate its use for this purpose and also for the estimation of the reconstruction support in
the super-resolution problem.

ESTIMATING THE REGULARIZATION PARAMETER

It is possible to obtain a good estimate of the optimum regularization parameter from the data alone
through the use of weighted cross-validation. The great merit of this technique is that it requires no
knowledge of the object, and places very loose constraints on the image and noise, namely that the
noise should be white and that the image be "very smooth" - this notion is defined precisely in
Reference 5.

The idea behind weighted cross-validation is as follows. Suppose f Ok is the minimizer of

N 2
I {(Ah)j - gj} 2 + 13I1hIIF

j=1
j*k

where the kth data point has been omitted. We can now predict a value, (Afpk)k, for this kth point
and, for a given value of 13, form the weighted prediction error V(Pl):

N
V(P) = I {(Afa.k)k- gk} 2 wk (13)

k=-1

where the wk(13) are weighting functions which represent the relative significance of the gk in the
prediction. They take the form

wk(13) = r (AAH+ 31)k-, 1 2

trace {(AAH + 13Iy)1  I

It can be shown (Wahba) that the II which minimizes the expression above for V(P3) is an estimate
of the minimizer of the true prediction error:
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MATRIX OPERATORS AND THE SVD

The operator, the image and the reconstruction will consist in practice of finite arrays. We shall
assume that the imaging operator has been recast (if necessary) as a two-dimensional matrix and
that f and g are vectors. The finite-dimensional approximations to the Hilbert spaces F and G are
KN and KM , N- and M-dimensional spaces of real or complex numbers. For matrices with
complex entries, A* becomes AH and the solution is

fo = (AHA + IIN)"1 AHg (1)

or fo = AH (AAH + pIM)'lg

To facilitate analysis and gain insight into the nature of the ill-posed problem we make use of the
method of singular value decomposition (SVD) 3. (There is also a significant gain in accuracy in
using the SVD rather than in forming AHA directly.) We write for the SVD of A

A = UyVH (2)

where

UHU =- VHV = VVH = IN

and
I: = diag (a, ... CYN), Gi > 0.

U consists of the N orthormalized eigenvectors ui associated with the N largest eigenvalues of AAH,
and V consists of the N orthonormalized eigenvectors vi of AHA. The oi, the non-negative square
roots of the eigenvalues of AHA, are the singular values of A.

Then, from equation (1),

fo = V diag (...,aj/(i2 +3) ... )UHg (3)

If 03 = , we have

fo = A+g

where A+ denotes the Moore-Penrose generalized inverse (familiarly called the pseudo-inverse) of
A. Thus the operator in equation (1) can accurately be described as a regularized pseudo-inverse of
A.

The regularizing role of 13 can clearly be seen in equation (3); for zero 13, the elements of the
diagonal matrix are simply the inverses of the non-zero singular values of A and can grow without
bound as these tend toward zero.
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N

j-1

where g represents the ideal noiseless image

The estimator V(P3) can be expressed in the form

N 2
I {(AAH + pI)-lgh2.

v(j3) = k=1

[ trace {(AAH + pi)-1 }]2

Thus to calculate V(P3) it is necessary to invert AAH + pI . In the general case, V(P3) can be

rewritten in terms of the SVD of A:

A = UZVH, = diag(o ,... ,aN).

We find

V(P)= I(k2f ) 2 /{N

where

A

g UHG

Having carried out the SVD of A, this form has the advantage that recalculating V(P3) for a new
value of 13 involves little more than 4N multiplications.

A further simplification can be made when A is a circulant matrix. In this case Af is a circular
convolution, and the calculation can be carried out using a discrete Fourier transform (DFT), or,
more efficiently, a fast Fourier transform (FF1). U in this case is the DFT matrix and '" is the
DFT of the data.

Although the problem of finding the regularization parameter would now be highly tractable, this
approach is not usually applicable to superresolution for two reasons. The first reason is that in
general the point-spread function in an imaging problem is neither a periodic function nor of finite
extent, so that A cannot be a circulant. However, A can often be approximated as a circulant. The
second consideration is relevant in spectral extrapolation: a circulant approximation to A enforces
the same support bounds on the reconstruction as on the data g, so that only residual extrapolation
is obtained outside the system bandpass. It might be possible in some cases to alleviate this
problem by estimating the regularization parameter with a circulant approximation to A and then
carrying out the actual reconstruction with the correct A.
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ESTIMATING THE OBJECT SUPPORT

A number of approaches are possible to the problem of estimating the object support, which enters
the calculation through the matrix A. Given the point-spread function of an imaging system, and
possibly prior knowledge of the types of objects involved, one can sometimes form a good estimate
of the outer boundary of the object support simply from the width of the image. An alternative
strategy can be based on the fact that, for values of 13 around the optimum, the error estimator V(13)
is found to increase rapidly as the object support bound is reduced below the correct value. (The
analytical behavior of V(13) under these circumstances is still under investigation.) This suggests
that we should choose the support bound associated with the minimum of the surface V(13, support
bound).

An image with 5% Gaussian additive noise was formed of the object shown dashed in Figure 1.
The object support was 17 units wide. A sequence of cross-validation curves was calculated over
the range 10-9 < 13 < 108 for reconstruction supports of 1 to 25 pixels. The resulting surface is
shown in Figure 2. The minimum occurs at the point corresponding to 13 = 0.1, support = 17. A set
of values of V(13) was then calculated for 13 = 0.1 and for a series of reconstruction supports
consisting of the correct support bound of 19, but differing by the deletion of successive internal
single points. Thus the reconstruction was forced to zero on one of the 17 pixels in each case.
Figure 3 shows the resulting values of V(P3) plotted against the corresponding deleted pixels. The
positional dependence approximately conforms to the correct object support.

DISPLACEMENT RANK AND FAST MATRIX-VECTOR MULTIPLICATION

Inversion of an NxN matrix takes in general 0(N 3) operations. If the matrix is Toeplitz the number
of operations needed falls to O(N 2). If the imaging operator is shift-invariant and the numbers of
samples and sampling rates (for unit magnification) are the same in image and reconstruction
spaces, then the imaging matrix A is Toeplitz. However, it is often the case that A is not Toeplitz,
but nevertheless retains much Toeplitz-like structure. This is true, for example, if we assume that
the point-spread function is shift-invariant, but that A is rectangular, or that the sampling rates in
image and reconstruction spaces are unequal, or that columns are deleted from A to restrict the
reconstruction support in some appropriate way. In all of these cases, A retains some regularity in
structure which one would expect could be used to make computations involving A more efficient.

The concept of displacement rank was introduced to quantify these ideas 6. The SVD then provides
a mechanism for constructing approximations to A in a form in which its special properties can be
exploited 7 . We define first the NxN downshift matrix Z:

"0 0 ... o" X 0-
Zx = 1 0 ... 0 x2 - x

0 1 ... 0 x3a v x2

LO 0 ... 1_ LXNJ LXN.IJ
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The displaced difference of an arbitrary NxN matrix B is defined as B-ZBZH. By means of the
SVD, the displaced difference can be written

N H
B - ZBZH lxiYi

i=1

If the SVD is truncated at r terms, we obtain a reduced displacement rank r approximation to B. An

equation of the above form has the unique solution 6

r
B = L(xi)U(yi)

where L is a lower triangular Toeplitz matrix whose first column is xi and U is an upper triangular
Toeplitz matrix whose first row is ý . Then multiplication of a vector by B can be accomplished in

2r convolutions. For sufficiently small r, a significant saving of effort will results from performing
these with the FFT, the number of operations falling from O(N 2), for the direct computation of Bg,
to 0(2rNlog2N) . In evaluating the product, U(yi)g yields the right half of the convolution
between the top row of U(yi) and g. Similarly, L(xi)g is the left half of the convolution between

the bottom row of L(xi) and g. Note that, for a Toeplitz matrix, the displaced difference contains
non-zero elements only in the leading row and column, is of rank 2 and can be represented by the
sum of two products of lower and upper triangular Toeplitz matrices.

The triangular matrices in the expansion for B can be written

L(xi) = [xi Zxi ... I ZN1 xi]

and

U(yi) = [y, I Zy, I ... I ZN-lyiH

The displaced difference defined above is most relevant when large blocks of B are displaced in the
(1, 1) direction. In many cases of interest (arising in practice from more general sampling schemes)
we encounter matrices having blocks displaced in other directions, and the lowest rank

representation will be obtained when the displacement reflects the structure of the matrix. Let us
define a generalized displaced difference as

D Pq= B - XBYH

where X = ZP and Y = Zq.

B can now be expanded into a sum of products of lower and upper triangular matrices (not now in

general Toeplitz):
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L(xi) = [xi Xxii... XN'lxi]

and

U(y1 ) -- [YIYyiI''I yN-lyi]H

DISCUSSION

The number of operations necessary to form the product Bg is approximately 2N{r+(r+l)log2N}
where we have assumed g is real and that the FFT involves O(Nlog 2N) operations. Note that for
each term LUg , two FFrs must be performed since Ug yields the right half of a convolution and
L(Ug) yields the left half. It is necessary to inverse Fourier transform after performing the first
convolution, select the appropriate subset of the data and then re-transform to perform the
convolution with L . For r = 2 there is a computational gain over the direct matrix-vector
multiplication for N > 35 and for r = 4 there is a gain for N > 70. For two-dimensional non-
separable point-spread functions, and r = 4, this threshold would be reached by a 9x9 image, since
the imaging operator would then be written out as an 81x81 matrix. The computing cost for a
32x32 image in this case drops to about one-tenth that of the direct multiplication (order 324
floating-point operations).

Modifications of the Toeplitz imaging matrix A are induced by changing the sampling scheme in
image or reconstruction space; for example, by periodic deletion of rows or columns to modify the
data or reconstruction supports. Note that we are particularly concerned here with computing '.le
product Qg , where Q is the regularized pseudoinverse of A. We recall that
Q = (AHA+PI)'IAH. An upper bound on the displacement rank of Q is given by 7

r(Q) _< 2r(A)+3,

which places a bound on the number of operations required to form Qg. We note also that for
isoplanatic imaging systems and equal sampling intervals in data and reconstruction space, A is
Toeplitz and has displacement rank 2; (AHA+0I1) can then be inverted in O(4N2) operations.

It may not be convenient from a hardware point-of-view to take the data with the same spatial
sampling that one desires to carry out the reconstruction. If one forms A from a Toeplitz matrix T
by removing alternate rows, then the sampling interval in the image is twice that in the
reconstruction. For clarity, let us keep the same number of points in image and reconstruction
space, so A is NxN. Then in general the displacement rank of A can be as large as N. However,
we have not properly exploited the structure in A, which is along the direction (1,2), rather than
(1,1), as in a Toeplitz matrix. If we consider instead D12(A) = A-ZA(ZH) 2, we find that D12(A) is
of rank <3. In general, if we form AI by deleting every nth row,
Djn(Aj) = A1 -ZAI(ZH)n will have rank (n+l). A, can again be expanded into a sum of products
of lower and upper triangular matrices. Note that in this case the U matrices are no longer Toeplitz.
However, because the product U(yi)g yields every nth point of the right half of the convolution of yj
and g, we can still use the FF1 to perform the convolution, discarding the undesired points. If, on
the other hand, every nth column had been deleted to form A2, the appropriate displacement
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difference would be D.I(A2) = A2 - ZnA2ZH , and a similar procedure could be used in computing
the product Lh, where h = Ug. (The data points in h have also to be interleaved with zeros in
appropriate places.)

Unfortunately, for A formed of alternate rows of a Toeplitz matrix the rank of D12(Q) and D2,(Q)
are less than or equal to the full rank of Q even though DI2(A) = 3. It seems that one cannot
generally expect the reduced displacement rank representation to offer greater computational
efficiency unless the sampling rate is the same in image and reconstruction spaces. However, in
some particular cases of dissimilar sampling rates, low displacement ranks for Q have been
obtained. For example, in experiments with imaging matrices of (sin x/x) 2 type and constructed
with the sampling rate in reconstruction space twice that in image space, it was found that D21(Q)
was of much less than full rank. The features of the matrix which are responsible for this property
are being investigated.

CONCLUSIONS

A regularized solution to the image reconstruction problem has been discussed and the use of
weighted cross-validation demonstrated in the estimation of the regularization parameter and the
reconstruction support. We have also shown how low displacement rank representations can be
used to improve computational efficiency for imaging matrices of practical interest. These
techniques are not limited to the example from optical physics considered here, but should be
widely applicable to problems in the general area of information processing.
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IMAGE OF OBJECT + 5% GAUSSIAN ADDITIVE NOISE
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Figure 1: A scaled image of an object 17 pixels wide. The image contains 5% Gaussian additive noise.
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Figure 2: Cross-validation prediction error V1 , support). The regularization para5 eter ranges from ne.9 to
le8, and reconstruction support widths range from 25 to ! pixel. Thc minimuml occurs for li = 0.1 and

support width = 19 pixels. Thc object support was 17 pixels wide.
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Object & X-Validation Curve as Support Point is Excluded: BETA=0.1
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Figure 3: Object and superimposed cross-validation prediction error V(fP = 0.1, excludedpoint). Observe
that V reflects some of the internal support structure of the object and gives a good estimate of the object

width.
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Superresolution Algorithms for a Modified Hopfield
Neural Network

John B. Abbiss, Bryan J. Brames, and M. A. Fiddy, Member, IEEE

Abstract-The purpose of this paper is to describe the imple- serial machines still leave much to be desired. For most
mentation of a superresolution (or spectral extrapolation) pro- neural networks, their learning or restoration capabilities
cedure on a neural network, based on the Hopfield model. This
was first proposed by Abbiss et al. [1 ]. We show the computa- can be expressed in terms of the minimization of some
tional advantages and disadvantages of such an approach for appropriate energy or cost function. One of the objectives
different coding schemes and for networks consisting of very of this paper is to take an established algorithm in image
simple two state elements as well as those made up of more reconstruction and identify those aspects of it that can be
complex nodes capable of representing a continuum. With the related to the programming requirements that would be
appropriate hardware, we show that there is a computational relate to teprement s ta woul be
advantage in using the Hopfield architecture over some alter- necessary for implementation on a Hopfield neural com-
native methods for computing the same solution. We also dis- puter. From the analysis of such a network applied to solve
cuss the relationship between a particular mode of operation of a problem for which the cost function is well defined, one
the neural network and the regularized Gerchberg-Papoulis might be able to assess their use for the solution of a wider
algorithm. class of optimization problems.

1. INTRODUCTION The Hopfield network is a fully connected network in
the sense that any one of the processing elements is con-

rrwERE are several models of neural networks, each of nected to every other one. This contrasts with layered net-
hich has a structure based loosely on our view of works, such as a multilayered perceptron (MLP), in which

biological nervous system components [2]. A neural net- processing elements are arranged with connections only
work architecture is one consisting of a very large number between neighboring layers. This difference in topology
of simple processing elements densely interconnected by is accompanied by differences in the thresholding func-
a set of weighted links. Each processing element updates tions and in the procedures to find the connection
its state by comparing the sum of its inputs with a pre- strengths. The Hopfield network operates iteratively; the
scribed threshold. The study of the properties of neural connection strengths are assigned and specify a cost func-
networks is a subject still somewhat in its infancy, and tion which the iterative procedure minimizes. The MLP
current hardware limitations reduce their practical im- is a one-pass network once the connection strengths have
pact. Indeed, it has been suggested by Anderson and Ro- been "learned" by the minimization of an error function
senfeld [31 that they may not become useful until inex- which quantifies the difference between the current and
pensive special purpose parallel hardware is available, desired output states.
Should that hardware be available, the question remains It was pointed out by Jau et al. [4] that some iterating
as to how one would make best use of a neural computer; image restoration processes are mathematically very sim-
i.e., how one should program or "train" it to perform the ilar to autoassociative memory; indeed if the input infor-
tasks required. The hope is that some problems for which mation is incomplete, it can be considered as a key pattern
it is difficult to find satisfactory algorithmic solutions to an associative memory. Since the approach to image
might be amenable to this kind of computing architecture, restoration presented here was first proposed [1, there
which can organize itself and learn what it is expected to have been other related studies which we mention here.
accomplish. Zhou et al. [5] considered an energy function identical to

One anticipated use of neural networks is in autoasso- (6) in order to specify network interconnection strengths.
ciative memory and in image (or signal) classification, Their application was the restoration of grey level images
recognition or understanding applications; these are ap- degraded by a shift invariant FIR blur function and addi-
plications that we believe the human brain is particularly tive noise. Grey level information was coded by a simple
good at while current algorithms implemented largely on sum of binary elements and the network was serially up-

revised August 23, 1990. This w dated with a stochastic thresholding rule to avoid getting
Manuscript re~ceived April 25, 1989; teie uut23 90 hsw rapeknlclmnm fteeeg ucin age

was supported in part by the SDIO/IST and managed by ONR. trapped in local minima of the energy function. Jang et
J. B. Abbiss and B. J. Brames are with Spectron Development Labora- al. [61 utilized the optimization properties of the Hopfield

tories, Inc., Costa Mesa, CA 92626. network in order to estimate a matrix inverse. This is
M. A. Fiddy is with the Department of Electrical Engineering. Univer-

sity of Lowell, Lowell. MA 01854. clearly important in image restoration problems, as indi-
IEEE Log Number 9144725. cated by (8). Full grey level representation is assumed and
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a differential mode of implementation applied: they point where the elements of the connection matrix Tare formed
out that this method is similar to a steepest descent method according to the rule
but with a nonlinear thresholding step at each iteration. M
Bai and Farhat [7] also considered a cost function similar Tij= ,, (i, j = 1.2 .•N) (2)
to that in (6) to recover images from limited Fourier data. I I

In their approach there was an additional constraint on the and the v' are the elements of the M memory vectors, v,
norm of the derivative of the estimate as well as on thenormof he stimte tsef. Te icreent dde tothe to be stored. The i,1, can take the values + 1, and it is
norm of the estimate itself. The increment added to the assumed that the diagonal term, T,, is zero in the Hopfield
current estimate was weighted by a "gain" factor prior model.

to thresholding, which was chosen to ensure that the net- This thresholding rule can be applied in series (asyn-

work energy function decreased at each step. Their recon- chronously) or in parallel (synchronously). In the serial

structions showed advantages for low-signal-to-noise ra- chousyoripalel(nhoosy)Inteeil
tiosituctions showed advabeintages fplo gna-tedonoiser- mode, the rule is applied sequentially to the nodes of the
tio situations and are being implemented on optoelec- network, the state of the network being updated after each
tronic hardware. Winters [81 considers a norm minimi- operation. In the parallel mode, the current network state
zation as expressed by (6) but without any explicit regu- remains unchanged until the thresholding operation has
larization term included. The minimization of his cost been applied to every node. The configurational energy
function is achieved by the penalty method which requires function for the network has the form [91, [101
that a large positive value is added to the cost function, N N

wherever a nonlinear inequality constraint is not satisfied. E = - 1 Tiv i (
An adaptive penalty function allows one to avoid local 2 =

minima and this complete procedure can be mapped onto
the Hopfield energy function. Results showed that the re- where superscript T denotes transpose. Serial threshold-

constructions were robust against noise and could be im- ing will always minimize this energy function, provided

plemented in microseconds on an analog electronic net- that the T7 are nonnegative. If M is sufficiently small, this

work, as compared to several hours on a minicomputer, state will correspond to the memory closest in Hamming

Using a Hopfield network, our interest is in an appli- distance to the state in which the network was started.

cation for which a solution state evolves through the min- Parallel thresholding results in either convergence to a

imization of some specific cost or energy function. Once stable state or oscillation between two states [ 11].

the energy function is defined, one can determine the ap- This iterative scheme can be expressed more concisely

propriate connection strengths in order that the energy and modified to permit biasing of the neuron inputs in the

function associated with the network is the same as that following manner. We let the state of the network after

of the problem under consideration. A key feature of a net the nth iteration be described by the N element vector

of this type is its construction from a set of simple pro- v (n + 1) = U(Ti,•n + b)
cessors, each of whose states is determined by a thresh-
olding operation applied to a sum of weighted inputs from where U is the threshold operation, T denotes the matrix

other processors or nodes. The properties of the network with elements T.j, a superscript denotes iteration number,

as a whole are determined by the thresholding function and b is the bias vector. The bias vector incorporates

used, and by the pattern and strengths of the connections boundary conditions such as image data; it effectively

between the processing elements. shifts the decision threshold for each element. In this case
the energy function minimized by the network is of the
form [101

II. THE HOPFIELD NETWORK WITH Two STATE E = - 1/2 1, TT,, - bTv. (4)
ELEMENTS: THEORETICAL FRAMEWORK The change in energy for a change in the state of one

neural element from tUk to 19k + A tUk is
The Hopfield neural model 191, [101 allows one to spec-

ify a set of desired memories as minima of a configura- AEk = -ArkI(Tt, + b)k + 1 T.Av'k].
tional energy of the network. We assume that the network
consists of N processing elements each of which has two Taking Tkk to be zero ensures that the change in energy is

states and each of which has a thresholding operator that always negative, since the term in the brackets above then

determines the states of the element from the total input has the same sign as A rk. If T4k is nonzero, the term in

to that element. the bracket will have the same sign as Ak provided Tkk is

Given an initial starting configuration or state of the positive, and then E is guaranteed to reduce; the conse-

network, each processor or "neuron" updates its state ac- quences of varying TAk were explored in an earlier publi-

cording to a threshold rule of the form cation and verify the expected behavior 1121. If two (or
more) neurons change state simultaneously, the change in

N E contains terms involving products of the form - 1/2

if Z Tqvj > 0 then vi I; otherwise ri' = - I (I) TkA ilk A it, (or these plus higher order terms if more neu-
rons change), the sign of which can vary.
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The two state representation is too limited for a one-to- where A is the system spread function or the Fourier trans-
one mapping between elements and signal or image sam- form kernel, for example. The interpretation of the data
pies, in most cases. However, these simple elements can g(x) to obtain information about the object f( y) requires
be taken in groups to represent grey levels through a va- the solution of a linear inverse problem. This is equivalent
riety of coding schemes. Alternatively, either analog or to finding the solution of a Fredholm integral equation of
more complex digital processing elements could be used the first kind. It is well known that small fluctuations in
to directly represent a grey level. the data g(x) can lead to very large fluctuations in the es-

timate of the uinknown function f(y). This is a manifes-
III. THE SUPERRESOLUTION PROBLEM tation of the ill-posed nature of the problem (the inverse

There are many applications that require the restoration of the operator A is not generally continuous) and some
of a signal or image from a limited discrete data set; for degree of regularization is required in order to determine
example, samples of the spectrum of a function, or of its stable and meaningful solutions. One usually proceeds by
low or band-pass filtered image. An important a priori assuming that the desired solution belongs to the space F
assumption for work in super resolution is the fact that of (possibly weighted) L2 functions, the regularization re-
most objects to be imaged are of compact support. This stricting that solution to conform to any a priori knowl-
leads to the well-known result that their spectra are band- edge available about the object whose enhanced image is
limited functions. In principle, therefore, one might hope sought.
to extend limited spectral data by means of analytic con- In practice, the solution is determined from a finite set

tinuation. This procedure is notoriously unstable in the of samples of g(x), and the data vector g is expressed by
presence of noise and does not provide a practical solution
to the problem. One has infinite freedom in interpolating g = Af + n
and extrapolating limited sampled data; hence, one is
forced to approach super resolution from an optimization where A is the imaging operator and n represents an ad-

point of view [13]. The best that one can hope to achieve ditive noise component; A explicitly contains the support
is the specification of a cost or energy function which pos- constraint of f, which is assumed to be known or esti-
sesses a unique minimum and is designed to incorporate mated a priori. These limited data can be regarded as a

whatever constraints and a priori knowledge might be noisy finite set of bounded linear functionals of f.

available to help limit the set of possible solutions to the A data-consistent solution exists, however, which is a

problem, while retaining desirable and necessary solution solution of minimum norm. This solution is the data-con-

characteristics. Examples of constraints include data con- sistent g which minimizes I1 g 112, where 11i denotes norm.
sistency, support consistency and, perhaps, positivity. The solution to this minimization problem can be writ-

The objective of the superresolution process is to obtain ten

a final image that has a higher spectral or spatial fre- N

quency content than the original data set, as a direct con- Q Vi~ucii (5)
sequence of incorporating the prior knowledge available =

into the cost function. It is a matter of taste, to a large where N is the number of image data points and the ci, u,
extent, how one designs a cost function in order to obtain and vN are the singular values, singular functions, and sin-
a desirable solution to the problem; i.e., a superresolved gular vectors, respectively, pertaining to the operator A:
signal or image with acceptable properties. The super- gular vectrs ti, n to t ero
resolution problem is thus transformed into one of deter- Au, = a, v; A*v, = a~u,. The singular values tend to zero
mining the (global) extremum of a cost function on the as i increases, leading to an instability in the estimator. If

mion the the first Ni s N singular values are dominant, then the
assumption that this solution is optimum. remainder may be neglected, but only at the expense of

One of the early successes of a neural network was to loss of resolution in b.

find a good approximation to the traveling salesman op- loss of solution is g.

timzatonprole [1].The superresolution optimiza- Thus, thssolution is ill-conditioned but stability can
timization problem [14c. The surresoltwon two be restored by relaxing data consistency; hence, we min-tion problem can be mapped onto a neural network in two imzthcotfnin

distinct ways. One is to train network using a data base imize the cost function

of superresolved images [15]-[171, the other is to relate E = liAg' - gl12 + 01l jg 112. (6)
the cost function associated with a given network to the
chosen superresolution cost function. It is the latter ap- The estimate is
proach that we adopt here.

N

IV. SUPERRESOLUTION AND SPECTRAL ESTIMATION = = (g' v,)uia,/(a• + 0) (7)

Most signal or image recovery problems can be de-
scribed by linear equations of the form where the regularization parameter 0 is chosen to achieve

a compromise between resolution and stability, and usu-

g(x) A(x, y)f(y) dy ally requires some adjustment in order to establish its op-
J timal value. As 0 tends to zero, the solution becomes more
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data consistent. The minimizer of this cost function can plexity of the elements, i.e., whether they can only take
be computed directly in matrix form, namely, on two states, a bounded continuum of values such as 0

[A*A + '8-<~ 8 1 ("graded neurons"), or an (effectively) un-
[ +31]-A*g () bounded continuum. Granularity of the representation will

T
where, for a real-valued matrix, A* becomes A , and I affect the convergence properties of the network; coarsely
represents the identity matrix, quantized systems can converge to local energy minima,

An alternative approach to estimating the object is to yielding less than optimal reconstructions.
consider the minimization of the cost function 11f - ' 112 We shall first demonstrate the formal mapping of a
using a trigonometric polynomial of the form [13] superresolution algorithm onto a Hopfield network. The

N technique will then be extended to fully address the sec-
Z= dk Ok ond and third issues on a two-state network. We will

k=1 ibriefly examine the advantages of more finely quantized

where the 'k form a basis in the data space F and the systems, and finally discuss the relation between parallel

optimal dk satisfy thresholding and a regularized form of the well-known

N Gerchberg-Papoulis spectral extrapolation algorithm

Z [(0,m, 0n)F + 036.1dm = Gn (9) [20]-[22].
my= I Let us represent the current estimate by the state of the

and the G, are Fourier data corresponding to the low-pass network v. We can rewrite (6) as

filtered image g. E = vTATAv - 2vTArg + gTg + 3vTv.

It is worth pointing out that in the space F that incor- Comparing this expression for E with that of the Hopfield
porates the known support constraint for the function to Comparin this expes
be restored, the three solutions given by (7)-(9) are equiv- network, (4), gives

alent; expression (9) can be obtained from expression (8) T = -2(ATA + 01)
[18]. Each method for solution is more or less computa- 3 (10)
tionally the same in that each requires - (N3) multipli-

cations; this was pointed out earlier in [1]. where I is the identity matrix, and the gTg term can be
We note that expression (7) requires on the order of ignored, since it represents a total offset for E.

CN3 multiplications, where the overhead C is large by Thus, superresolution can be mapped simply and di-
comparison with the other methods. However, a primary rectly onto a Hopfield network. The connection matrix is
concern is the ease with which the regularization param- formed -from the imaging operator matrix, which contrib-
eter 0 can be varied; this can be done at the cost of O(N2) utes information about the imaging system, and the
multiplications for (7). regulaiization parameter 3, which sets a bound on the

norm of the final estimate. The available data g contribute
V. IMPLEMENTATION ON A NEURAL NETWORK only to the bias vector b.

We will now show how a superresolution algorithm For serial operation, the change in energy due to a

equivalent to the previously described approaches can be change A vk is

defined on a Hopfield neural network. Several issues must AEk = -vA k [(Tv + b)k + 2 Taa vd. (11)
be addressed. First, it is necessary to define the connec-
tion matrix from the cost function. For some problems Convergence to a minimum is guaranteed if the expres-
this cannot be accomplished without performing more sion in braces always has the same sign as A vk. This can
calculations than are required for a more conventional so- be ensured by altering the diagonal of Tto zero; however,
lution to the problem. The latter consideration was noted such a change is equivalent to choosing an arbitrary value
by Takeda and Goodman [19]. Thus, the computational for 13. This is not acceptable,,since the regularization pa-
load or complexity must be considered in deciding the rameter should be chosen to reflect the noise in the data
merits of a neural network solution to this problem. and to obtain an optimum reconstruction, not to ensure

Other issues which must be addressed center on modi- convergence of the algorithm.
fications of Hopfield's formulation to satisfy our require-
ments. Hopfield ensures that the network will converge VI. SUPERRESOLUTION ON A Two-STATE NETWORK
by arbitrarily setting the diagonal of the connection matrix In this section we will modify the Hopfield formulation
to zero. This is unacceptable, because it shifts the abso- so that the energy minimum of the network will coincide
lute energy minimum of the network from the minimum with that of (6), while still decreasing the energy with
of (6). Moreover, while a suitable network can be con- each change in the state vector. We shall find that this is
structed from two-state elements, one often requires that possible by introducing a two-level threshold in place of
the reconstruction be represented over at least a set of grey the usual single-level one. In addition, we will incorpo-
levels. Thus, it may be necessary to combine a number of rate a generalized grey scale mapping which describes lin-
neural elements to represent a reconstruction pixel. The ear transformations of a state vector v into a vector w hay-
method of coding the grey levels depends on the com- ing grey levels. We write this as w = Sv, where S could
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be a mapping from an N element vector, each of whose Thus, we require that I A Vkj < IAk and sgn (A vk) = sgn
elements can take the values 0 or 1, to an L-element vec- (Ak). For a binary network, where Vk E (0, 1), we then
tor (L _< N) whose elements can take a wider range of obtain the following rule to ensure that the network en-
values. For example, if S represents a base-2 mapping, ergy does not increase:
each element of v can represent a power of 2, giving a
range of 2 N/L values for each element of w. The range of 1 for Ak > 1
v need not be limited to {0, 1): we use this for the pur- v(n+i for IAtI < 1
pose of illustration. Other coding schemes are possible, 0 r

such as clustering or bit-density coding. for Ak < -1.
The expression for the energy is nowThe expressio for t egyi + ow We consider next the operation of a nonbinary network.E -- IlAw - g~l] + l lwll2.

Suppose the grey-level vector w is perturbed by some VII. SUPERRESOLUTION ON A NONBINARY NETWORK
amount Aw. The difference in energy between states is

AE = 2 AwT{(ATA + 01)w - A Ig + I (ATA + 0I)Aw} The restriction of the state vector v to binary values
permitted the simplest possible processing elements to be

(12) used in a neural architecture. With more complex proces-
sors this simple representation is unnecessary and ineffi-

or, in terms of the neural state vector v, cient: the optimal coding scheme is intimately related to

AE = 2AvT[ST(ATA + Ol)Sv - STATg the nature of the available hardware.
A disadvantage of simple two-level elements is that they

+ S2(ArA + 01)SAV]. (13) can give a coarsely quantized representation in recon-
struction space which leads to the creation of local energy

It should be emphasized that (13) contains no assump- minima. There is still only one absolute energy minimum,
tion about the range of values of v or of the updating mode but the network may converge to a local minimum of
of the network. A restriction to two states reflects the de- higher energy. It should be recognized that this behavior
sire to use a large number of simple binary processing also occurs with a single level threshold and a zero-elements in neural architectures. loocr ihasnl ee hehl n eo

Wmens ino pere aprchiedureswhich diagonal T matrix, and the resulting reconstructions are
We now present a procedure which ensures that the sometimes called "spurious stored states." A typical so-

change in energy expressed by (12) and (13) always de- lution of this type is shown in Fig. 1(c) for a network of
creases, provided serial thresholding is adopted. For a 90 two-level elements; a 6-b coding scheme yields 15
change ArVk, the change in energy A Ek of the network isgien by(1), withe thange finenergy deofinitionstfork is a points in the reconstruction. Whether such a reconstruc-
given by (11), with the following definitions for T and b: tion is of acceptable quality is difficult to predict, and a

T = -2Sr(ATA + #I)S function of the needs of the user. This difficulty can be
b -- 2STArg. overcome by using elements which can take on values over

a continuum, such as 0 < vk -< 1 (Fig. 1(e), (f)). These
The grey-scale mappings we are considering associate elements are similar to the graded neurons employed by

a specific neuron with one and only one image pixel. Hopfield in a differential network [101.
Hence, the columns of S each contain only one element, We shall now examine the behavior of an asynchronous
and it is not difficult to show that the diagonal elements network composed of elements which can take on a con-
of T take the form tinuum of values. Because JA vkI is no longer fixed there

TA = -2S(ArA + 1) (14)is no need for a threshold/decision operator; we will sim-
= k U+ ) (14) ply use the value of A vk which yields the greatest de-

where Sjk is the nonzero element of the kth column of S. crease in energy.
Since the diagonal elements of ATA are positive, and f is It was noted above that the maximum decrease in en-
some positive quantity, Tkk is always negative. Hence, we ergy occurs when
can rewrite (13) in the form Avk = Ak/2.

AEk = --Avk((Tv + b)k - I ITkkIAvk}. (15) In addition, IAkI represents an upper bound on IAvk1. As

Thus, AEk will be negative provided (A Vk)2 < At A Vk, one approaches the solution, (Tv + b)k approaches zero,
where so this upper bound decreases. For networks with a fixed

IAvkI (e.g., ±1 for all k), one would expect IAkI even-
2 tually to be smaller than I A vkI, so no changes can be madeAk = - (Tv + b)k to reduce the energy, even though the network is not yet

at the global minimum. Thus, the fixed step methods will
the maximum decrease in energy occurring when generally be limited to some outer neighborhood of the

global energy minimum (although one might arrive at the
A = ½ At. (16) minimum).
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Fig. 1. The line types used are solid for an image or a neural network reconstruction; dashed for the object; and dot-dashed for
the algebraic (SVD) reconstruction. (a) Object and incoherent image. Ninety two-state {0, 1) elements are mapped with 3 6-b
base 2 scheme to 15 pixels in the object. (b) The point-spread function of the imaging system (sinc 2). (c) Network using two-
state neurons converges to a local energy minimum after 5 cycles, f = 10-'. (d) After 5 cycles using 90 graded neurons the
network has not converged, but a good estimate of the object has emerged, 0 = 10-5. (e) Object and image containing 5%
Gaussian additive noise. (f) Neural reconstruction from (e) after 50 cycles, 6 = 0-4.5. Note that it is nearly indistinguishable
from the SVD result.

However, if we adopt graded neurons it is still possible Thus, if
to use very simple elements, yet circumvent the finite step
limitation. Since these elements can take on a continuum w = (Twt n) + b)k
of values between two limits, the energy is forced to de- parallel operation of the network will result in a compu-
crease at each step. A serially threshold network, con- tation which is identical to the regularized Gerchberg-Pa-
structed from these elements can therefore reach the global poulis algorithm. Since the latter always converges [22],
energy minimum after a sufficient number of cycles. One this choice for the A wk must always be possible. Optimal
could also dispense with the coding scheme, and use a selection of the A wk to accelerate convergence of the net-
smaller number of more complex elements. work in the parallel mode is under investigation.

We would like to operate the network in the synchro-
nous mode to make efficient use of the network's paral- VIII. COMPUTATIONAL COMPLEXITY OF NEURAL
lelism. If the kth neuron changes by A wk ALGORITHM

w+n) = w- + AWk The computational complexity associated with image

where convergence is assured provided that the conditions reconstruction or superresolution using the singular value
of Section VI are met. decomposition of A to solve (8), and using the neural net-

A regularized form of the Gerchberg-Papoulis algo- work approach, has been examined for one-dimensional
rithm reads [20J-[221 images (Table I). The computational load associated with

WIN" = A T + [(1 - #)I - ATA)wP the neural network is independent of whether the thresh-
AA olding is serial or parallel, although the actual computa-

= w(R) + (Twt ") + b). tional time is obviously less for parallel thresholding. The
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TABLE I
THE NUMBER OF OPERATIONS REQUIRED FOR SUPERRESOLUTION BY SVD INVERSION AND BY A NEURAL

OPTIMIZATION ARE LISTED FOR THE TOTAL CALCULATION, AND FOR UPDATING EITHER THE IMAGE OR THE

REGULARIZATION PARAMETER

Requirement Operation SVD Neural

New0 Mults N2 + N KN2 + (K + I)N
Adds N

2  KN
2 

+ (K + I)N
Divs N N

New image Mutts 2N 2 + N (K + I)N 2 + (K + I)N
Adds 2N 2  (K + I)N 2 + KN
Divs N N

Total operations Mults 15N' + 3N 2 + 2N N' + (K + I)N2 + (K + I)N
Adds N

2  N' + KN
2 

+ KN
Divs N N
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Restoration of sub-pixel detail using the regularized pseudo-inverse of the imaging operator

J. B. Abbiss and B. J. Brames

TITAN SPECTRON Division
3535 Hyland Avenue

Costa Mesa, California 92626

ABSTRACT

We present an analysis and computational results relating to the regularized restoration of subpixel information from
undersampled data. The method makes use of a small set of images in various stages of defocus. An iterative implementation
permits the incorporation of a non-negativity constraint The problem we consider is fundamentally under-determined, but
useful results can be obtained in reasonably low noise conditions.

1. INTRODUCTION

The investigations discussed here form part of a program whose subject is the enhancement of images obtained from space-
based remote sensors. For the present purpose, these images are assumed to consist of quantized data from a fixed two-
dimensional set of sensors, such as a CCD array. Typically for these arrays, the Airy disc is smaller than one pixel. Thus, for
reasonably fast and well-corrected optics, the conventional limit on system resolution is likely to be the result of the spatial
sampling associated with the pixel size; i.e., the integration of the light energy in the image over the area represented by each
pixel.

For clarity, we consider the case of one-dimensional imaging with an incoherent source. Let the system point spread function
(psi) be represented by the continuous imaging operator L . Then, for an isoplanatic systerm. a, Whe absence of noise, the
image g of an object f is given by the convolution

g(y) -- f L(x - y) f(x) dx (1)

where S is the support of f . The output of the kth detector (pixel), extending from Yk to Yk+1 , is

Yk+l

gt = yk g(y) dy

fk+l

Jt f dy 1S L(x - y) f(x) dx

Interchanging the order of integration (which is certainly permissible with the physical functions considered here) and making
the definition

Yk+1

ak(x) = y L(x-y) dy

we obtain for the pixel-integrated image

gk - fs ak(x) f(x) dx, k= 1, 2,, K (2)
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We now discretize the object into a set (fj , j = 1, , J ) over eqLal intervals and write, as an approximation,

I

gk = a akjfj, k1, 2,...,K (3)
j-I

where akj is the integral of ak(x) over the jth interval. In matrix form, equation (3) can be written

g = Af

where A is a K x J matrix.

Since the akj can be determined from the system psf and the pixel array structure, the deconvolution problem represented by
equation (3) can, in principle, be solved and the set (t ) reconstructed approximately from an equal set of measurements of
the gk.

In practice, the restoration problem is made much more difficult because of background and intrinsic noise, array
imperfections and errors or uncertainties in the knowledge of the optical properties of the system. When pixel integration is
over a significant part of the system psf, achieving even a modest degree of enhancement, using a single image, poses
intractable difficulties in the presence of these perturbations. However, the necessary additional information can be derived
from multiple differing images of the given object. After a brief discussion of the characteristics of the inverse problem
represented by equation (3), we shall give a detailed description of a specific method for acquiring this information.

2. REGULARIZED IMAGE RESTORATION

There are many applications that require the restoration of a signal or image from a limited discrete data set; for example,
samples of the spatial or temporal spectrum, or of the object's low or band-pass filtered image. An important a priori
assumption in image restoration is that the object or objects are of compact support. This leads to the well-known result that
their spectra are bandlimited functions. In principle, therefore, one might hope to extend limited spectral data by means of
analytic continuation, and then, by Fourier transformation, obtain an enhanced image. This procedure is notoriously unstable
in the presence of noise and does not provide a practical solution to the problem.

"This central difficulty can be expressed in another way. Most signal or image recovery problems can be described by linear

equations of the form

g(x) = f A(xy) f(y) dy

where A is the system point spread function or the Fourier transform kernel, for example. The interpretation of the data g(x)
to obtain information about the object f(y) requires the solution of a linear inverse problem. This is equivalent to finding the
solution of a Fredholm integral equation of the first kind. It is well-known in such a case that small fluctuations in the data
g(x) can lead to very large fluctuations in the estimate of the unknown function f(y). This is a manifestation of the ill-posed
nature of the problem (the inverse operator is unbounded) and some method of stabilization is needed to determine useful
solutions.

The problem of a lack of continuous dependence on the data can be overcome by one of the various techniques of
regularization [1, 21. Essentially, the ill-posed problem is replaced by a related well-posed one, chosen to be physically
meaningful and to possess the necessary properties of convergence and stability. Thus we may change the concept of a
solution, or the Hilbert spaces of which the object and image are elements, or their topologies, or the operator itself. The
technique we shall use belongs to the last category.

We impose physically reasonable constraints on the permitted solutions. If c is a measure in the norm sense of the noise in
the image (nown in the appropriate Hilbert space is denoted by I I • I I H ) and if C is some constraint operator with E a
known bound, we shall require that all possible reconstructions f' satisfy
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C may be used, for example, to impose smoothness on the reconstruction or to weight the reconstruction support. If C is the

identity operator, E is a bound on the norm of the reconstruction. We combine the constraints quadratically and minimize the
functional

1~-A l2 + I Cr 112

where 0• - e2/E2 . Note that smaller values of 0l are equivalent to demanding greater fidelity between the reconstruction and the
data; greater values place more emphasis on the property of the reconstruction associated with C. In the present discussion we
shall take C = I. The minimizer fp can then be expressed in either of the forms

fp = (A*A + 0I)-1 A*g
or (4)

fo = A* (AA* + PID)-1 g

where A* is the operator adjoint to A. The inverses of the bracketed operators will always exist, since the eigenvalues of the
symmetric operators A*A and AA* are non-negative. The operator, the image and the reconstruction will consist in practice
of finite arrays and equation (4) becomes a matrix equation.

3. SUB-PIXEL RESOLUTION FROM MULTIPLE DEFOCUSSED IMAGES

We can state the deconvolution problem in the more general case where we are given a set of R differing noisy images of the
same object over the same pixel array.

Then the rdh image consists of the vector of pixel outputs given by the equation

g(r) = Ar f + n(r) (5)

where n(r) represents some additive noise vector. (Other forms of noise can be accommodated by appropriate
modifications of equations (4) and (5), but we shall not address this question here.) We are required to estimate f from the
set (g(r), r=- 12,-, R).

We obtain the solution by assembling the image set into one composite image, and the corresponding matrices of integrated psf
samples al into a single imaging matrix. The regularized solution is then again given by equation (4). The appropriate value
for the reguiarization parameter 01, which is closely related to the signal-to-noise ratio in the data, can be estimated in several
ways; for example, by the method of weighted cross-validation [3].

The image set required to achieve sub-pixel resolution can be derived by various means. Stark and Oskoui [4] discuss an
object reconstruction technique which uses a set of images differing from one another by rotation or lateral translation of the
pixel array. It is evident that acquiring a sequence of data sets by lateral displacement of the detector (or image) through some
fraction of a pixel at each step allows one to sample the image as finely as is desired. (For the two-dimensional image, the
displacements can be in any direction.) Rotational displacement similarly permits arbitrarily fin- sampling. They consider the
specific case in which the system psf is much smaller than a pixel, so that resolution in the data is governed almost completely
by pixel integration rather than the optical properties of the system.

An alternative method, which we shall adopt, is to use an image set obtained with differing point-spread functions. These
could be generated by separate optical systems, or conceivably at different wavelengths. The system psf can also be
conveniently altered by varying the degree of defocus; implementations of this method could depend on a single detector
translated into the chosen planes of defocus, or a system of beamsplitters and detector arrays in appropriate locations.

If the reconstruction procedure is to be effective, the various images must contain significantly different information, which
implies that the point spread functions must differ appreciably over the scale of a pixel. We shall assume that the images are
formed on the same array, or arrays with identical characteristics, and that the object field is spatially and, if necessary,
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temporally invariant from one image to another. We shall also assume that the point spread functions are accurately known
and, for the purposes of the algorithm used later, that the images are formed from incoherent radiation. We do not require that
any of the point spread functions are much smaller than a pixel; for the illustration presented below, the psf at focus is about
half the size of a pixel. In a practical implementation, the images would not be centered on the pixel arrays in exactly the same
way; i.e., there would be some lateral translation between the images. The effect of including lateral translations has not yet
been investigated, but one would not expect reconstruction quality to suffer under these circumstances.

4. ILLUSTRATION

To illustrate these ideas, we include some results from a numerical simulation. The object field consists of a group of delta-
function-like incoherent radiators. We shall show that from a small set of images, one at focus, the others at various stages of
defocus, object locations can be well recovered, even when several of the objects' geometrical images lie within a single pixel.
The algorithm is based on the regularized formula of equation (4); in addition, the calculation is iterated a small number of
times to enforce non-negativity on the reconstruction.

The reconstruction is made initially into a spatial region defined by the central lobe of the focussed image, but using a finer
grid. No prior assumptions are made about the locations or the number of objects within this region. For small, relatively
isolated sources, some ringing will occur in the reconstruction, with associated negative pixel values. The support is
progressively refined by eliminating these pixels at each iteration until an entirely positive reconstruction is obtained. The
smallest object space which is consistent with the image data will yield the best reconstruction, and the problem, initially
underdetermined, becomes finally an overdetermined one.

A modified form of this scheme, which would be appropriate for more extended objects, includes a weight matrix which
biasses the next iteration against those pixels with negative values. The computation is significantly slower in this case, since
the size of the reconstruction space remains constant. We also note the possibility of using a regularized form of the non-
negative least-squares algorithm of Lawson and Hanson [5). The relative performance of this procedure, also of course
iterative, has not been fully evaluated.

In this example, the object field consists of eleven highly localized sources of equal intensity, distributed over a 3x3 block of
image pixels; see Figure 1. (It should be noted that the reconstruction grid used did not coincide with the object grid; hence the
objects cannot appear as single-pixel "points" in the reconstruction.) The central lobe of the system psf was about half the
width of a pixel. Four independent images containing equal energy were generated over a 7x7 block of pixels, the first
corresponding to a focussed system, the others at various stages of defocus. A method was devised for choosing defocus
conditions with significantly different information content. Starting with the focussed image, with associated imaging matrix
Ao, we wish to find a defocussed image whose imaging matrix A, is as independent as possible from A0, The criterion used
for this purpose was the magnitude of the condition number (the ratio of the largest to the smallest singular values) of the
matrix formed from the center columns of A0 and A1. The range of defocus over which the search was made was from 0 to 4
waves. The combination selected was that possessing the smallest condition number. Knowing Ao and A,, A2 was
determined, and finally A3. The merit functions (reciprocals of condition numbers) calculated for combinations of two, three
and four defocus levels are shown in Figure 2. Note that a zero occurs whenever the variable degree of defocus coincides with
that corresponding to one of the other imaging matrices; then the composite matrix is singular and its condition number
bcomes unbounded. The degrees of defocus chosen for the four images in this case were of magnitude 0, 0.8, 1 6 and 2.4
waves. The corresponding images are shown in Figures 3-6. The only readily-identifiable feature in the focussed image is that
the central pixel is brighter than the surrounding ones.

Reconstructions were performed over the region defined by the central block of 3x3 pixels, with sampling seven times as fine
as that in the data. Thus the reconstruction space initially consisted of 441 points, while the four images provided a total of
196 data points. The reconstructions obtained when each of the images was corrupted by additive Gaussian noise with
standard deviation equal to 1% of the mean pixel content is shown in Figure 7. All of the objects are located close to their true
subpixel positions. Figure 8 shows the result obtained when the noise level is increased to 5%. The reconstruction is still
generally accurate, although there is now some distortion in object location and one or two small artifacts have begun to
appear. A signal-to-noise ratio can be defined as the ratio for .cih image of the sum, on a pixel-by-pixel basis, of the signal
power to the sum of the noise power. At the 5% level, this quantity varied between 33 and 28 dB. This example was designed
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to be reasonably challenging, and spreading the objects further apart, or reducing their number, considerably increases the

algorithm's robustness against noise.

5. CONCLUSIONS

A method for recovering detail at the sub-pixel level from a small set of images in various stages of defocus has been discussed
and demonstrated, using an algorithm which incorporates regularization to counter the destabilizing effects of noise. The
iterative version of this algorithm, which permits the inclusion of a non-negativity constraint, is particularly effective at
recovering accurate object support estimates. It is therefore an appropriate technique to use when it is known, a priori, that the
object field consists largely of small well-separated targets. The sensitivity to noise of the method deserves more detailed
investigation. A quantitative comparison of its performance with methods which make use of laterally translated or rotated
image sets would also be of considerable interest. In practice there would inevitably be some lateral shift between images,
even if they are formed on the same array, and a hybrid scheme might prove to be the most robust in the presence of noise. I
Ultimately, of course, the performance of any restoration algorithm must be limited by the information content of the image
set. What should be sought, therefore, is the encoding scheme which most efficiently exploits the total information carried by
the incident radiation.
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Fig. 3. Image at 0.0 waves defocus

Fig. 4. Image at 0.8 waves defocus
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Fig. 5. Image at 1.6 waves defocus

Fig. 6. Image at 2.4 waves defocus
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ABSTRACT

A new algorithm for the restoration of extended images, the Regularized Pseudoinverse Deconvolution (RAPID)
algorithm, is proposed. The algorithm consists of expanding the regularized pseudoinverse of the imaging operator
into a sequence of terms which can be easily implemented using Fourier processing techniques. The first term of the
expansion is closely related to generalized Wiener filtering if the point spread function is shift-invariant. The other
terms in the expansion are correction terms which are small when the point spread function is shift-invariant, as is the
case with many imaging systems. Even when the point spread function of the imaging system is space-variant, such as
with a partially obscured imaging system or a system with severe aberrations, the correction terms are both few in
number and easily implemented.

1. INTRODUCTION

In the absence'of any other degrading effects, the performance of an optical system is ultimately restricted by
diffraction. The finite extent of the entrance pupil imposes a fundamental upper limit on the system's spatial frequency
response. The image quality of most operational systems will not, however, approach this theoretical limit very closely.
It is possible that the design or construction will be flawed, as in the case of the Hubble Space Telescope, through
defective manufacture, assembly or quality assurance procedures. In addition, aging of components will almost
certainly compromise sensor performance at some stage in its lifetime, and, as in spaceborne operation, replacement
may not be a simple task. The detector itself may impose limitations; for example, where a CCD array is used,
information is lost in the inter-pixel areas, and image energy is integrated over the active area of each pixel. Other
degrading factors will include defective pixels, noise in the CCD array and electronic subsystems, and a possibly
obtrusive background. The methods of image restoration considered here were originally aimed at achieving
performance beyond the diffraction limit 1, but are in fact capable of compensating simultaneously or separately for
aberrations induced by the optical components and for the limitations of the detector. They are inherently robust and
possess valuable noise-suppressing properties.
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The assumption is made that the overall effect of the optics can be described as a possibly time- and shift-variant
blurring of the image due to diffraction and aberrations. Thus, at any instant of time, the point spread function may
change across the sensor field-of-view. It can be assumed, however, that at any given point in the image the point
spread function is effectively determined by its spatial location and is time-invariant over the integration time of the
sensor and then undergoes a change at a later time. This is the case with the Hubble Space Telescope. It will be
assumed that the set of point spread functions is known or can be measured. For the Hubble wide-field planetary
camera there are two primary components to the point spread function; one due to diffraction by the aperture
obstructions and the other due to spherical aberration. The point spread function is observed to be locally shift-
invariant, and the image can be considered to be created by the summation across the entire field-of-view of the
segmented set of localized point spread functions convolved with objects in the corresponding parts of the field.

However, for a simple refracting telescope designed for observation of extended objects, the aberrations causing
image degradation can be highly space-variant. For an extended object, image segmentation introduces undesirable
edge effects at the block boundaries when locally shift-invariant approximations of the globally shift-variant point
spread function are used to process the separate blocks. In addition, post processing interpolation or iteration is
required to smooth the block boundaries in the final composite image 2. In the approach proposed in this paper, the
point spread function is allowed to vary continuously over the whole image and a special decomposition of the image
reconstruction operator is performed which permits Fourier techniques to be used to process the entire image.

The overall optical system imaging equation can be written as a Fredholm integral equation of the first kind.
Solutions to ill-posed problems of this type are known to be numerically unstable 3,4 .Additionally, it is anticipated that
the image will be spatially sampled by a solid-state sensor which will introduce spatial integration, discretization and
associated noise processes. Thus, after scanning the image into a vector, the integral representing the continuous image
can be rewritten as a matrix expression. In general, the presence of the sensor noise takes the measured image vector
out of the span of the columns of the kernel matrix, which is typically highly ill-conditioned. Thus, when it is desired to
estimate what the image would have been in the absence of aberrations or with less diffraction than the instrument can
provide, techniques derived from regularization theory are required to restore stability to the reconstruction. By
introducing a suitable error criterion (based on, e.g., a vector norm), images can be constructed which are, in terms of
the chosen criterion, closer to the undistorted geometrical image of the object than the detected image data.

To the extent permitted by the noise in the image, in-band effects can usually be removed by some form of
pseudoinverse filter 5. However, detector pixellation and the finite aperture of any system set resolution limits not so
easily overcome, and a method for achieving spectral extrapolation has to be devised. The spatial spectrum of the
object is the Fourier transform of its amplitude, in the coherent case, or its intensity, in the incoherent case. If the object
is known to be of finite extent, its Fourier transform is an analytic function, and the out-of-band part of the spectrum
can in principle be fully recovered by analytic continuation 6 of the image spectrum after removal of any in-band
distortion. The inverse Fourier transform of this extended spectrum would then yield a perfect image of the original
object. Equivalently, one could attempt to solve directly the equation describing the imaging process. This, however,
involves the inversion of an ill-conditioned matrix, and the restoration process is intrinsically unstable, even small
amounts of noise rendering the results meaningless. These difficulties may be surmounted by applying the methods of
regularization theory 7, developed to deal with il!-posed problems of this type; the solution is derived by means of a
constrained least-squares procedure in which a regularization parameter plays an essential role. Stability in the
restored image, which is computed via the regularized pseudoinverse of the imaging matrix, is controlled by this
parameter. Its optimal value depends on the signal-to-noise ratio in the data.

2



2. NATURE OF THE PROBLEM

We wish to estimate the object f from an image g, given that

g = Af+r (1)

where A is the imaging operator and r represents the corrupting effect of additive noise. For clarity in the analysis,
we consider the one-dimensional case with the operator A given in integral form by

(Af) (y) = faA(xy)f(x)dx, c!y:d. (2)

In the absence of noise, Eq.(1) becomes a Fredholm equation of the first kind, in which the unknown function appears

only under the integral sign. We can identify the sources of difficulty in solving this equation in the presence of noise or
other perturbations (such as computer round-off error) by means of a singular function analysis 8.

We expand the kernel of the integral in terms of the singular functions u (x) and vi (y), orthonormal systems in

object and image spaces respectively, and the singular values a.:1

00

A(x,y) = cr ui(x) vi(y). (3)

i=1

The object and image can be expanded in the forms
00

f(x) = •fi ui(x) (4)

i=1I

g (Y) = gi Vi()(5g )= ~ v(y) (5)

i=1

where the coefficients are related to f (x) and g (y) by the integral formulae

fi= fb f(x)ui(x)dx (6)

and a

gi = Jf g (y) vi (y) dy. (7)

In the noiseless case (r = 0) , we find from Eqs. (2) and (6)
00

(Af)(y) T ffVi ( Y) (8)

i=3



It follows, using Eqs.(5) and (8), that

i= i fi (9)
and hence

00

f(x) = .- ui(x). (10)
i=1

Thus the object function can in principle be perfectly reconstructed from the set {gi} of image coefficients.

Now consider the effects of noise. By expanding r (y) in terms of the vi (y) , we can derive the contribution of
the noise to the new image coefficients:

g'i = .i fi + r.. (11)

The estimate of I(x) is now
00 r.

f =f(x) + u(x). (12)
i=l

Image formation is characteristically described by an integral transform of convolution type, i.e., A is a
convolution operator. Its singular-value spectrum typically decays asymptotically at an exponential rate 9. Since the ri
will in general decrease less quickly, the sum in Eq.(12) will be divergent and no bound will exist for the 'distance' (in
the sense of some appropriate metric) between the true object and the reconstruction. The effect of the noise on the
reconstructed image is a manifestation of the fact that convolution is a strongly smoothing process - closely similar
images can correspond to widely differing objects. Thus image restoration is an ill-posed problem, small perturbations
in the data causing large changes in the solution represented by Eq.(12).

3. THE REGULARIZED SOLUTION

The methods of regularization theory 7,1 0 can be exploited to convert the problem to a related well-posed one, i.e.,
one for which the solution exists, is unique and depends continuously on the data. Since we shall later be concerned
with computed reconstructions, we henceforth consider the problem in its finite discretized form; thus the imaging
operator A becomes a matrix. Although strictly we should introduce new symbols, for convenience we continue to
use f, g, and A to denote the discrete forms of object, image, and imaging operator. Generally f e C , g E C and

mxn
AeC

To regularize the problem, we shall modify A. We impose constraints 1 1 on possible solutions f'by requiring that

IIAf'-g12 <e2 (13)

where e is some suitable measure of the noise in the image, and that

II f, 112<. 2 (14)
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where ý is some suitable measure of the permitted 'signal strength' of the solution. ( II * J[ denotes norm in the
Hilbert spaces associated with object and image.) We combine these constraints and minimize

1i1Af-,gl2+f311 f, 112

where the regularization parameter PI is given by

2 = F2/42 (15)

The minimum-norm solution to this constrained least-squares problem is given by

fo = APg (16)

where
+ H -H

A = (AH A+P) AH (17)

We note the relationship of A + (which we shall call the regularized pseudoinverse) to A +, the Moore-Penrose
pseudoinverse 12

-0A0 (18)

The inverse of (AHA + P3I) always exists, since A H A is non-negative definite and the regularization parameter P3
is positive. A value of 03 should be chosen which balances data fidelity against smoothness in the reconstruction.
Methods are also available for determining 03 from the image data themselves 13,14.

4. SINGULAR VALUE AND FOURIER DECOMPOSITIONS

It is often convenient to compute the regularized pseudoinverse via the singular value decomposition (SVD) of A:

A = UVH (19)

where 
15

UHU = Im1 vHv = VVH = In (20)

and

I. = diag (o1, a 2-` a n), (F > 0. (21)

The singular values {ai} are assumed to have been arranged in descending order of magnitude

Cr > a 2 > Cr3 > ... > a n (22)

Then we find
fo = V F. uH g (23)

!S



where
I+ =diag ... -... J. (24)

2o + 13(24)

This representation is useful when the behavior of the reconstruction as a function of the regularization parameter is
being studied. Regularization can equivalently be achieved by setting P to zero, and simply truncating the singular
value series at a point which is dependent on the noise level ¶6.

An ab initio computation of fP via Eq.(23) requires the SVD of A followed by two matrix-vector multiplications. If
the regularized pseudoinverse can be precomputed, only one matrix-vector product is needed to generate the
reconstruction. For images of more than modest sizes, however, the computation rapidly becomes burdensome. If, for
example, f and g are 100xl0o, A is a 10 -by-104 matrix, and the matrix-vector product requires 108 multiplications.
There will also be considerable storage demands. Thus, if major computational resources are not available, some
means of simplifying the calculation will be needed in many cases of practical interest.

If the matrix A were square circulant of order n (A = [a ] , subscript mod n), we could dramatically reducej-i+l
the computational burden by exploiting the fact that the Fourier transform diagonalizes a circulant 17. If F denotes the
Fourier matrix:

1 1 1 ... 1

2 n-I

= 2 4 ...± 2(n1) w = exp(i21r/n) (25)

n-1 2(n-1) (n-1)2
wn- W w ... w~n

then

A = FHAF (26)

where

A = diag (XV X 2 ..... Xn) (27)

It follows from Eq.(16) that

4 ?o=FHA AFg (28)

where

A + dia Xi(29)

and ii is the complex conjugate of X," We note that the singular values { cr and the eigenvalues { X} are related by

I' = d] (30)

The operational counts for the SVD and the FFT are 0 (n 3) and 0 (nlogn) respectively.
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5. STRUCTURE OF THE IMAGING MATRIX

Under some circumstances the imaging matrix can be readily modified to circulant form. For a shift-invariant one-
dimensional system, the image is a convolution of the point spread function and the object. If the sampling intervals in
image and reconstruction spaces are equal, the matrix A is then Toeplitz (A = [a .] ) . If, in addition, the image and
reconstruction vectors are of equal length, A can be padded to circulant form. In two dimensions, f and g are matrices
and must be mapped into vectors. The manner in which this is performed will determine the structure of A. For
column-wise mapping, for instance, again with equal sampling in image and reconstruction spaces, A becomes block-
Toeplitz with Toeplitz blocks. If the image and reconstruction matrices have the same number of elements, A can be
padded to become block-circulant with circulant blocks, and the problem is again amenable to Fourier transform
methods. In both one and two dimensions, it should be noted that the penalty associated with the expansion of A to
circulant or block-circulant form is a relaxation of the support constraint on the reconstruction, which renders the
calculation, and in particular the degree of resolution enhancement achieved, much more sensitive to noise 18. An
alternative construction in the two-dimensional case is to zero-pad f and g into larger matrices and then to use a linear
congruential scan to map the padded matrices into vectors. A then becomes a circulant matrix since the linear

19congruential scan is an isomorphism between 2D convolution and 1D convolution .

For less structured imaging matrices (e.g., if the system is weakly space-variant) it may be asked whether
accelerated computation of the matrix-vector product is still possible. In this context, recent work on circulant
approximations to matrices of quite general form 20 appears highly relevant, and includes the following result. For any
matrix, A + say, we can write

(X

A += Co+ E L(x.)CT (y.) (31)

m=l

where Co is a circulant matrix with the same last row as A + L (Xm) is a lower triangular Toeplitz matrix with xm
as its first column, and C (ym) is a circulant matrix whose last row is y The IxmI and ym maybeobtained
from the truncated SVD of the cyclic displacement of A a:

A+ - EA+ ET= T XmT (32)

m=l

where E is the cyclic downshift matrix

000 ... o01

100...00
E = 1o0... 00 (33)

For imaging matrices with strongly Toeplitz features, ax should be a small number.
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6. THE REGULARIZED PSEUDOINVERSE DECONVOLUTION ALGORITHM

Consider a two-dimensional optical imaging system whose point spread function is both time- and space-
invariant. In the presence of additive noise, the imaging equation connecting the input (extended object), the output
(degraded image), and the point spread function (impulse response) is given by the following two-dimensional
convolutional integral equation

00 00

i(x,y) = f fo(x',y')p(x-x',y-y')dx'dy' +n(x,y). (34)

-0-00

In shorthand notation

i = p**o+n (35)

where o(x,y) represents the extended object, Kix,y) the degraded image, p(xy) the point spread function, and n(x,y) the
noise. It is assumed that the noise is independent of position in the image.

The discrete version of Eq.(34) can, of course, be cast 21 into the following vector-matrix form

g = Af+r. (36)

When, in particular, f, g, and r represent the one-dimensional column vectors formed by stacking the rows or columns
of the discretized versions of the input o(xy), output i(x,y), and the noise n(x,y), respectively, the two-dimensional
imaging matrix A is block-Toeplitz with Toeplitz blocks. It can be shown, using known results 22 that the regularized

pseudoinverse A +is block-persymmetric with persymmetric blocks. The inverse of a Toeplitz matrix is persymmetric,
and persymmetric matrices obtained by inverting Toeplitz matrices have much more Toeplitz-like structure than

general persymmetric matrices. In particular, their displacement rank is the same as that of the parent-Toeplitz
matrix23, 24. Displacement rank, it should be noted, is a quantitative measure of the closeness of a given matrix to being
Toeplitz. In one dimension, the displacement rank of a Toeplitz matrix is • 2, and the displacement rank of A+ is < 4.

P
In the early stages of this investigation, one of the authors (R.EB.) noted that for a variety of point spread functions

being studied the corresponding computer-generated regularized pseudoinverse matrices appeared to have banded

block-Toeplitz structure. He considered the implication of this observation. In particular, if a space-invariant point
spread function used in a two-dimensional linear convolutional imaging equation leads to a block-Toeplitz imaging

matrix with Toeplitz blocks, then the converse must also be true. That is, given a block-Toeplitz imaging matrix

containing Toeplitz blocks, then the corresponding space-invariant point spread function which gave rise to this
imaging matrix could be easily ascertained. This implies that from the regularized pseudoinverse an inverse point
spread function dp (x, y) could be constructed which could be used to process the image i(x,y) and form an estimate

bp (x, y) of the onginal object. This two-dimensional linear convolution technique is summarized by the equation

d= **i. (37)

8



The technique was tested on a digital computer with encouraging results. Further experimental investigations indicate
that results obtained with this Regularized Pseudoinverse Deconvolution (RAPID) algorithm are comparable in
quality to those obtained using parametric Wiener filtering. An error analysis is given in Appendix A. Results using
degraded images processed with both the RAPID algorithm and parametric Wiener filtering are presented in section 8.

7. DECONVOLUTION VIA WIENER FILTERING

Wiener filtering 21 is a well-known technique for processing images degraded and corrupted by noise as described
by Eq.(34). From a knowledge of the point spread function p(xy) characterizing the optical imaging system, it is
possible to compute the corresponding optical transfer function p (fx, fy) using the two-dimensional Fourier
transform

00 00

p(fx, fY) = f f p (x, y) exp [-i2c (xf x+ yf y) dxdy. (38)

-00-00

From the optical transfer function and knowledge of the power spectra of object S (f , fy) and noise n (fx, fy), the
parametric Wiener filter can be constructed, namely

P (fy)12W Y fx" fY) = - Sn C ) 1 "So (fx2 (39)

S(fx" fy) (x' fy)+ fY)

When y = 1, Eq.(39) reduces simply to the Wiener filter. If y is variable we refer to this as the parametric Wiener filter.
In the absence of noise, either form of the Wiener filter reduces to the ideal inverse filter. When the power spectra are
not known, which is often the case in practice, Eq.(39) can be approximated by

P• (fx' fy) 12

wY(x y P (x fy ) DP (fx, fy 12 + (40)

From the Wiener filter, using either Eqs.(39) or (40), an inverse point spread function w ,(x, y) can be constructed
using the two-dimensional inverse Fourier transform. That is,

00 00

w Y(x, Y) = f f o 7(fx, fy)exp[+inr(xfx+ Yfy) ]dfxdfy. (41)

-00-00

With the inverse point spread function given by Eq.(41), an estimate Y(x, y) of the object can be computed using
the two-dimensional linear convolutional equation

a=wY-**i (42)

where, again, i(x,y) is the degraded image.

9



8. RESULTS

Preliminary results obtained using the RAPID algorithm are presented in this section. For purposes of comparison,
results obtained using the parametric Wiener filter algorithm are also included. The optical system considered for these

studies was a simple spherical converging lens as shown in Fig. 1.

Point Source

Object Plane

.Spherical Converging Lens

Image Plane

CCD Array

Figure 1. A Simple Spherical Converging Lens Imaging System

The object and image planes are coplanar and orthogonal to the optical axis of the lens. An arbitrary point source
located in the object plane gives rise to an intensity distribution (the point spread function) in the image plane. A
charge-coupled device (CCD), for example, can be used to measure the point spread function. A ray-trace program was
used in the synthesis of four different point spread functions dominated by spherical aberration (Fig. 2), coma (Fig. 3),
astigmatism (Fig. 4), and defocus (Fig. 5). The object plane distance (mm), image plane distance (mm), focal length
(mm), F-number, tangential field-angle (deg.), and sagittal field-angle (deg.) associated with each of these four figures

are summarized in Table 1. The same CCD model was used in all simulations. The array consisted of a 31-by-31 planar
arrangement of square detectors measuring 0.01 mm on a side with a center-to-center spacing of 0.01 mm. Each point
spread function was obtained by tracing 20,000 rays.

10



Table 1

Spherical Aberration Coma Astigmatism Defocus

Object plane distance 48.6 48.6 48.6 48.6
Image plane distance 52.0 52.0 50.4 51.0
Focal length 24.3 24.3 24.3 24.3
F-number 4.80 5.70 5.70 4.00
Tangential field-angle 0.00 2.87 5.91 0.00
Sagittal field-angle 0.00 2.87 0.00 0.00

On the top line, center diagram, of Figs. 2 through 5 are mesh plots of the four point spread functions considered.
Each point spread function p(xy) is represented by a 31-by-31 matrix. The ideal extended object o(xy) used in this
analysis was a 256-by-256 matrix which is displayed as an 8-bit gray-level diagram in the upper-left hand corner of
each of these figures. Performing a two-dimensional convolution, see Eq. (35), of the extended object with the point
spread function (in the absence of noise) yields a 286-by-286 degraded image i(xy) of which the central 256-by-256
portion of the degraded image is shown in the upper-right hand corner of each of these figures. The full 286-by-286
matrix is used, however, in subsequent image processing computations.

On line two of each of the four figures are mesh plots of the inverse point spread functions (31-by-31 matrices)
dp(x, y) (left-diagram) and w 7(x, y) (right-diagram) obtained using the RAPID and Wiener filter algorithms,
respectively. Performing a two-dimensional convolution of the point spread function p(xy) with each of the inverse
point spread functions dp (x, y) and w 7(x, y) yields processed point spread functions (61-by-61 matrices). The
central 31-by-31 portions of these processed point spread functions are shown as mesh plots on line three (left- and
right-diagrams, respectively). For purposes of comparison, a 31-by-31 null-array with a single non-zero entry for the
center pixel (Delta) is also displayed on line three, center diagram.

The values of the regularization parameters (P3 and y) which gave rise to the best processed point spread functions,
judged visually, for this analysis are: spherical aberration (0 and 0), coma (3x10-2 andlx0-rO), astigmatism
(2x10- and2x10 2 ), and defocus (5x10- and 1x10 ). These same regularization parameter values were used in
computing the object estimates 60 (x, y) and 6,y(x, y) using Eqs. (37) and (42), respectively These object estimates
(316-by-316 processed images) are displayed as gray-level diagrams on the bottom-line of each of the four figures.
Only the central 256-by-256 portions of the processed images are shown.

The results presented in Figs. 2 through 5 were based on studies using synthesized point spread functions. We
were fortunate to obtain real digitized degraded images of the planet Saturn taken with the wide-field planetary
camera of the Hubble Space Telescope. The upper diagram in Fig. 6 shows a 400-by-250 degraded (unprocessed) image
of the planet Saturn. The second line in Fig. 6 shows two 31-by-31 degraded images of different stars (called star #1 and
star #2) also taken with the wide-field planetary camera. The RAPID algorithm was used to process the degraded
image of Saturn using the two star images as point spread functions characterizing the degradation process. In
particular, star #1 image was used as the input point spread function. Both star #1 and star #2 images were first
processed using the inverse point spread function obtained using the star #1 image only. The regularization parameter,
0I, selected was the one which gave rise to processed star images of equal quality, based on a minimum entropy
criterion. This same inverse point spread function was then used, via Eq.(35), to process the degraded Saturn image.
The size of the reconstructed image was 430-by-280. The central 400-by-250 portion of this reconstruction is shown in
the lower diagram of Fig. 6.
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Ideal Point Spread Function Degraded

Inverse PSF - Pseudoinverse Inverse PSF - Wiener

Processed PSF - Pseudoinverse Delta Processed PSF - Wiener

Processed - Pseudoinverse Processed - Wiener

Figure 2. Point Spread Function Dominated by Spherical Aberration
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Ideal Point Spread Function Degraded

Inverse PSF -Pseudoinverse Inverse PSF - Wiener

Processed PSF - Pseudoinverse Delta Processed PSF - Wiener

Processed -Pseudoinverse Processed -Wiener

Figure 3. Point Spread Function Dominated by Coma
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Ideal Point Spread Function Degraded

Inverse PSF - Pseudoinverse Inverse PSF - Wiener

Processed PSF - Pseudoinverse Delta Processed PSF - Wiener

Processed -Pseudoinverse Processed Wiener

Figure 4. Point SFread Function Dominated by Astigmatism

14



Ideal Point Spread Function Degraded

Inverse PSF - Pseudoinverse Inverse PSF - Wiener

Processed PSF - Pseudoinverse Delta Processed PSF - Wiener

Processed - Pseudoinverse Processed -Wiener

Figure 5. Point Spread Function Dominated by Defocus
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Unprocessed Saturn Image

Star #1 Image Star #2 Image

Processed Saturn Image

Figure 6. Hubble Space Telescope Imagery
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9. CONCLUSIONS

A new algorithm, the Regularized Pseudoinverse Deconvolution (RAPID) algorithm, has been developed and has
xcen shown to be equivalent in performance to Wiener filtering for shift-invariant point spread functions. The
iigorithm can be implemented either by direct convolution or indirectly using Fast Fourier Transform (FFT)
:echniques. The advantage of this approach is that, through the use of linear congruential scanning and the application
)f the circulant expansion of equation (31), regularized reconstruction methods can be applied to extended images
legraded by shift-variant point spread functions.
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APPENDIX A - TRADEOFFS BETWEEN ACCURACY AND SPEED

In this appendix we examine the RAPID reconstruction scheme in the continuous domain. An ex ression for the
error displays a compromise between accuracy and speed. Let A denote the convolution operator on L (9R :

Af(x) = (a*f) (x) = Ja (x-y)f(y)dm (y).

912

Let A denote the two-dimensional Fourier transform and let M. denote the multiplication operator: M~p = ao. As
a a

is well-known (see reference Al below), the Fourier transform diagonalizes the convolution operator:
A-]A A - M. ,with JJAJJ = .1 In this formalism, the regularization operator satisfies:

a

A-1 A +A -
A =M 2 1.-

(al + O) a

The RAPID operator is obtained by determining the regularization pseudoinverse and then restricting it to a region
near the origin. Introduce the associated convolution operator

A bf(x) = f (w ba) (x-y)f(y)dm(y),

9t2

where wb denotes the boxcar window: wb (x) = 1 if x e [-b, b) x [-b, b] , zero otherwise. The regularization
operator for A is

A-I + A
b, M 2 =-M

w b*(da2 +1) a

Then the error between the regularization operator and the RAPID operator is

As b tends to infinity, the error tends to zero. However, a large value for b corresponds to an increased computational
load. Thus, a trade off must be made between speed and accuracy. In addition, the error bound also indicates that a
different window (such as a square Hamming) might improve the accuracy of the regularization scheme.

Al. N. Young, An Introduction to Hilbert Space, Cambridge University Press, 1988.
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ABSTRACT

In a paper presented at the first conference in this series, the problem was considered of reconstructing an object
from image data degraded by a compact linear operator. Simulated synthetic aperture radar measurements were used
to demonstrate that, using Tikhonov regularization techniques, resolution well beyond the conventional limit can be
achieved. These image restoration methods have been further extended and are being investigated for application to
space-based surveillance systems at optical wavelengths and also to laser radar imaging and detection problems. The
computational burden associated with the reconstruction procedure is of critical importance, since the calculation must
be performed rapidly enough to permit an effective response. For realistically-sized images, however, it can easily be
shown that the operations count is prohibitively large, and some method of accelerating the deconvolution process
must be found.

Approximations to the reconstruction matrix based on circulant expansions, which permit fast Fourier transform
techniques to be exploited, represent a promising area for research. A new algorithm for fast restoration of extended
images, the Regularized Pseudoinverse Deconvolution (RAPID) algorithm, suggested by the Toeplitz-like structure of
the reconstruction matrix, is also proposed and discussed. Applications to both optical and radar systems are
considered and illustrated. In the radar case, the squared modulus of the transmitted signal's ambiguity function plays
the role of the optical point spread function.

1. INTRODUCTION

In the absence of any other degrading effects, the performance of an optical system is ultimately restricted by
diffraction. The finite extent of the entrance pupil imposes a fundamental upper limit on the system's spatial frequency
response. The image quality of most operational systems will not, however, approach this theoretic-' limit very closely.
It is possible that the design or construction will be flawed, as in the case of the Hubble Space Telescope, through
defec,ive manufacture, assembly or quality assurance procedures. The methods of image restoration conidered here
were originally aimed at extending the performance of an optical system beyond the diffraction limit1 , but are in fact
capable of compensating also for aberrations induced by the optical components. They are inherently robust and
amenable to parallel implementations.



The assumption is made that the imaging system can be characterized by a point spread function which induces a
possibly time- and shift-variant blurring of the image. It will be assumed that the point spread function is known or
can be measured. In the case of the Hubble wide-field planetary camera, for example, there are two primary
components to the point spread function; one due to diffraction by the aperture obstructions and the other due to
spherical aberration. For a delay Doppler imaging radar, on the other hand, the point spread function is a bilinear
functional of the transmitted signal.

The overall imaging system equation can be written as a Fredholm integral equation of the first kind. Solutions to
ill-posed problems of this type are known to be numerically unstable2 3. Additionally, it is anticipated that the image
will be spatially sampled which will introduce discretization and associated noise processes. Thus, after scanning the
image into a vector, the integral representing the continuous image can be rewritten as a matrix expression. In general,
the presence of the sensor noise, takes the measured image vector out of the span of the columns of the kernel matrix,
which is typically highly ill-conditioned. Thus, when it is desired to estimate what the image would have been in the
absence of aberrations or with less diffraction than the instrument can provide, techniques derived from regularization
theory are required to restore stability to the reconstnrction. By introducing a suitable error criterion (based on, e.g., a
vector norm), images can be constructed which are, in terms of the chosen criterion, closer to the undistorted
geometrical image of the object than the detected image data.

To the extent permitted by the necise t" the image, in-band effects can usually be removed by some form of
pseudoinverse filter 4. However, &chctor pixellation and the finite aperture of any system set fundamental resolution
limits in the performance of such iiers, and a method for achieving spectral extrapolation has to be devised. The
spatial spectrum of the object is the Fourier transform of its amplitude, in the coherent case, or its intensity, in the
incoherent case. If the object is known to be of finite extent, its Fourier transform is an analytic function, and the out-of-
band part of the spectrum can in principle be fully recovered by analytic continuation' of the image spectrum after
removal of any in-band distortion. The inversc Fourier transform of this extended spectrum would then yield a perfect
image of the original object. Equivalently, one could attempt to solve directly the equation describing the imaging
process. This, however, involves the inversion of an ill-conditioned matrix, and the restoration process is intrinsically
unstable, even small amounts of noise rendering the results meaningless. These difficulties may be surmounted by
applying the methods of regularization theory 6 , developed to deal with ill-posed problems of this type; the solution is
derived by means of a constrained least-squares procedure in which a regularization parameter plays an essential role.
Stability in the restored image, which is computed via the regularized pseueoinverse of the imaging operator, is
controlled by this parameter, whose optimal value depends on the signal-to-noise ratio in the data.

2. NATURE OF THE PROBLEM

We wish to estimate the object f from an image g, given that

g = Af+r (I)

where A is the imaging operator and r represents the corrupting effect of additive noise. For clarity in the analysis,
we consider the one-dimensional case with the operator A given in integral form by

(AP (y) = faA(xy)f(x) dx, c!y5d. (2)

In the absence of noise, Eq.(1) becomes a Fredholm equation of the first kind, in which the unknown function appears
only under the integral sign. We can identify the sources of difficulty in solving this equation in the presence of noise or
other perturbations (such as computer reund-off error) by means of a singular function analysis'.



We expand the kernel of the integral in terms of the singular functions ui (x) and vi (y), orthonrmal systems in
object and image spaces respectively, and the singular values a.:

00

The object and image can be expanded in the forms 0

f W) = XdfZ ui(x) (4)

00

g (Y) = i i (y) (5)

i=I

where the coefficients are related to f(x) and g (y) by the integral formulae

fd = J a f iW ui(x)dx (6)

giy = fd g() i v(y) y(7

nr the noiseless case (r = 0) , we find from Eqs. (2) and (6)
00

(AD (y) = i a f iVi(Y). (8)

It follows, using Eqs.(5) and (8), that

f = . fi (9)

and hence

00

fA[) (y)() (0

i=1

Thus the object function can in principle be perfectly reconstructed from the set [gi) of image coefficients.

Now consider the effects of noise. By expanding r (y) in terms of the vi (y), we can derive the contribution of the
noise to the new image coefficients:

gi = (.i fi r(9)

The estimate j(x) is now 00

?(x) f(x .+. ui(x). (12)
1



Image formation is characteristically described by an integral transform of convolution type, i.e., A is a

convolution operator. Its singular-value spectrum typically decays asymptotically at an exponential rate 8 . Since the rI

will in general decrease less quickly, the sum in Eq.(12) will be divergent and no bound will exist for the 'distance' (in

the sense of some appropriate metric) between the true object and the reconstruction. The effect of the noise on the

reconstructed image is a manifestation of the fact that convolution is a strongly smoothing process - closely similar

images can correspond to widely differing objects. Thus image restoration is an ill-posed problem, small perturbations

in the data causing large changes in the solution represented by Eq.(12).

3. THE REGULARIZED SOLUTION

Methods of regularization theory 6, 9 can be exploited to convert the problem to a related well-posed one, i.e., one

for which the solution exists, is unique and depends continuously on the data. Since we shall later be concerned with

computed reconstructions, we henceforth consider the problem in its finite discretized form; thus the imaging operator

A becomes a matrix. Although strictly we should introduce new symbols, for convenience we continue to usef, g, and

A to denote the discrete forms of object, image, and imaging operator. Generally f e Cn, g e Cm and A c CmOxf

To regularize the problem, we shall modify A. We impose constraints10 on possible solutions f' by requiring that

11Af'-g112 <_F2 (13)

where E is some suitable measure of the noise in the image, and that

If' 112<-2 (14)

where 4 is some suitable measure of the permitted 'signal strength' of the solution. ( * IJ denotes norm in the

Hilbert spaces associated with object and image.) We combine these constraints and minimize

IIAf'-gII2+pIl f' II2

where the regularization parameter P3 is given by

0 = .2/42 (15)

The minimum-norm solution to this constrained least-squares problem is given by

P = A0g (16)

where

(AH A+I) A (17)

We note the relationship of A+ (which we shall call the regularized pseudoinverse) to A+, the Moore-Penrose

pseudoinversen A + +SA = liraA.(m

P3-0 P, 18

The inverse of (AHA + 11) always exists, since A HA is non-negative definite and the regularization parameter P3
is positive. A value of P3 should be chosen which balances data fidelity against smoothness in the reconstruction.

Methods are also available for determining (3 from the image data themselves12 ' 13



4. SINGULAR VALUE AND FOURIER DECOMPOSITIONS

It is often convenient to compute the regularized pseudoinverse via the singular value decomposition (SVD) of A:

A = UEVH (19)

where
14

UHU = Im, vHv = VVH = In (20)

and

Y_= diag (cFI I a T o. > 0. (21)

The singular values {ai} are assumed to have been arranged in descending order of magnitude

0I>T2 >3 > ... > . (22)

Then we find
fo = V Y+ U g (23)

where

'2 diag .... 2 (24)

This representation is useful when the behavior of the reconstruction as a function of the regularization parameter is
being studied. Regularization can equivalently be achieved by setting P to zero, and simply truncating the singular
value series at a point which is dependent on the noise level15 .

An ab initio computation of f3 via Eq.(23) requires the SVD of A followed by two matrix-vector multiplications. If
the regularized pseudoinverse can be precomputed, only one matrix-vector product is needed to generate the
reconstruction. For images of more than modest sizes, however, the computation rapidly becomes burdensome. If, for4 4-8
example, f and g are 100-by-100, A is a 10 -by-10 matrix, and the matrix-vector product requires 108

multiplications. There will also be considerable storage demands. Thus, if major computational resources are not
available, some means of simplifying the calculation will be needed in many cases of practical interest.

If the matrix A were square circulant of order n ( A = [a. , subscript mod n), we could dramatically reduce
1-i+l 16the computational burden by exploiting the fact that the Fourier transform diagonalizes a circulant1 . If F denotes the

Fourier matrix:

1 1 1 ... 1

1 w ... IV

F H _ 1 2 4 2(n-1) zv exp(i2n/n) (25)

n-1 2(n-1) (n-i)2
W wn- ... w



then

A = FHAF (26)

where

A =diag (?.1, X 2... Xn)" (27)

It follows from Eq.(16) that

F= A+ F g (28)

where

A = diag .... (2...S(29)

and X.* is the complex conjugate of X.. Note that the singular values {a•i and the eigenvalues {X.} are related by

G = I il)

The operational counts for the SVD and the FFT are 0 (n 3) and 0 (nlogn), respectively.

5. STRUCTURE OF THE IMAGING MATRIX

Under some circumstances the imaging matrix can be readily modified to circulant form. For a shift-invariant one-

dimensional system, the image is a convolution of the point spread function and the object. If the sampling intervals in

image and reconstruction spaces are equal, the matrix A is then Toeplitz (A = [a. - d1) . If, in addition, the image and

reconstruction vectors are of equal length, A can be padded to circulant form. In two dimensions, f and g are matrices

and must be mapped into vectors. The manner in which this is performed will determine the structure of A. For

column-wise mapping, for instance, again with equal sampling in image and reconstruction spaces, A becomes block-

Toeplitz with Toeplitz blocks. If the image and reconstruction matrices have the same number of elements, A can be

padded to become block-circulant with circulant blocks, and the problem is again amenable to Fourier transform

methods. In both one and two dimensions, it should be noted that the penalty associated with the expansion of A to

circulant or block-circulant form is a relaxation of the support constraint on the reconstruction, which renders the

calculation, and in particular the degree of resolution enhancement achieved, much more sensitive to noise17 . An

alternative construction in the two-dimensional case is to zero-pad f and g into larger matrices and then to use a linear

congruential scan to map the padded matrices into vectors. A then becomes a circulant matrix since the linear

congruential scan is an isomorphism between 2D convolution and 1D convolution18 .

For less structured imaging matrices (e.g., if the system is weakly space-variant) it may be asked whether

accelerated computation of the matrix-vector product is still possible. In this context, recent work on circulant

approximations to matrices of quite general form 19 appears highly relevant, and includes the following result. For any

matrix, Ap say, we can write

++ T
A C L (xC = i) C (Y1)

m = 1



• +

where C is a circulant matrix with the same last row as A+, L (x ) is a lower triangular Toeplitz matrix with xm
0 3p mn

as its first column, and C (ym) is a circulant matrix whose last row is y". The {x, , and {y 1 may be obtained

from the truncated SVD of the cyclic displacement of AP:

cc

A+ - EA+ ET T• T (32)

m = 1

where E is the cyclic downshift matrix

000 ... 0 1

100...00
E =0 1 0... 00 (33)

000...10

For imaging matrices with strongly Toeplitz features, (x should be a small number.

6. THE REGULARIZED PSEUDOINVERSE DECONVOLUTION ALGORITHM

Consider a two-dimensional optical imaging system whose point spread function is both time- and space-
invariant. In the presence of additive noise, the imaging equation connecting the input (extended object), the output

(degraded image), and the point spread function (impulse response) is given by the following two-dimensional

convolutional integral equation

00 00

i(x,y) = f fo(x',y')p(x-x',y-y')dx'dy'+n(xy). (34)

-00-00

In shorthand notation

i = p**o+n (35)

where o(x,y) represents the extended object, i(x,y) the degraded image, p(x,y) the point spread function, and n(x,y)Ythe

noise. It is assumed that the noise is independent of position in the image.

The discrete version of Eq.(34) can, of course, be cast20 into the following vector-matrix form

g = Af+ r. (36)



When, in particular, f, g, and r represent the one-dimensional column vectors formed by stacking the rows or columns
of the discretized versions of the input o(x,y), output i(x,y), and the noise n(x,y), respectively, the two-dimensional
imaging matrix A is block-Toeplitz with Toeplitz blocks. It can be shown, using known results 21 that the regularized
pseudoinverse A + is block-persymmetric with persymmetric blocks. The inverse of a Toeplitz matrix is persymmetric,
and persymmetric matrices obtained by inverting Toeplitz matrices have much more Toeplitz-like structure than
general persymmetric matrices. In particular, their displacement rank is the same as that of the parent-Toeplitz
matrix22, 23. Displacement rank, it should be noted, is a quantitative measure of the closeness of a given matrix to being
Toeplitz. In one dimension, the displacement rank of a Toeplitz matrix is •< 2, and the displacement rank of A+ is • 4.

In the early stages of this investigation, it was noted that for a variety of point spread functions being studied the
corresponding computer-generated regularized pseudoinverse matrices appeared to have banded block-Toeplitz
structure. The implications of this observation were considered. In particular, if a space-invariant point spread function
used in a two-dimensional linear convolutional imaging equation leads to a block-Toeplitz imaging matrix with
Toeplitz blocks, then the converse must also be true. That is, given a block-Toeplitz imaging matrix containing Toeplitz
blocks, then the corresponding space-invariant point spread function which gave rise to this imaging matrix could be
easily ascertained. This implies that from the regularized pseudoinverse an inverse point spread function do (x, y)
could be constructed which could be used to process the image i(x,y) and form an estimate Op (x, y) of the original
object. This two-dimensional linear convolution technique is summarized by the equation

Op = dP**i. (37)

"Thre technique was tested on a digital computer with encouraging results. Further experimental invyestigations indicate
that results obtained with this Regularized Pseudoinverse Deconvolution (RAPID) algorithm are comparable in
quality to those obtained using parametric Wiener filtering. Results using degraded images processed with both the
RAPID algorithm and parametric Wiener filtering are presented in section 8.

7. DECONVOLUTION VIA WIENER FILTERING

Wiener filtering20 is a well-known technique for processing images degraded and corrupted by noise as described
by Eq.(34). From a knowledge of the point spread function p(x,y) characterizing the imaging system, it is possible to
compute the corresponding transfer function p (fx f y) using the two-dimensional Fourier transform

00 0

P (fx, fy) = f fp(x,y)exp[-i2(Xfx+ Yfy) ldxdy. (38)

-00-00

From the transfer function and knowledge of the power spectra of object S (fx. f ) and noise S (f . f), the
parametric Wiener filter can be constructed, namely

I -(f', 
fy) 

2

W Y,(fx, f[s" 0'9

P (fx, fyY LI xP , ( y) 12 + fY f

i !



When y = 1, Eq.(39) reduces simply to the Wiener filter. If y is variable we refer to this as the parametric Wiener fijtcr.
In the absence of noise, either form of the Wiener filter reduces to the ideal inverse filter. When the power spectra are
not known, which is often the case in practice, Eq.(39) can be approximated by

S. (40)

From the Wiener filter, using either Eqs.(39) or (40), an inverse point spread function w (x, y) can be constructed
using the two-dimnensional inverse Fourier transform. That is,

00 00

WY(X,y) = wY(fx, fy)expl[+i2(xfx +yf y)]df x df 1

-00-00

With the inverse point spread function given by Eq.(41), an estimate 6 Y(x, y) of the object can be computed using the
two-dimensional linear convolutional equation

0( = w Y (42)

where, again, i(x,y) is the degraded image.

8. APPLICATIONS TO THE OPTICAL CASE

Preliminary results obtained for optical systems using the RAPID algorithm have been previously presented 24 and
are summarized here. For purposes of comparison, some results obtained using the parametric Wiener filter algorithm
are also included. The optical system considered for these studies was a simple spherical converging lens. The object
and image planes are parallel and orthogonal to the optical axis of the lens. An arbitrary point source located in the

object plane gives rise to an intensity distribution (the point spread function) in the image plane. A charge-coupled
device (CCD), for example, can be used to measure the point spread function. A ray-trace program was used in the
synthesis of two different point spread functions dominated by astigmatism and defocus. The object plane distance
(mm), image plane distance (mm), focal length (mm), F-number, tangential field-angle (deg.), and sagittal field-angle
(deg.) associated with these point spread functions are summarized in Table 1. The same CCD model was used in both

simulations. The array consisted of a 31-by-31 planar arrangement of square detectors measuring 0.01 mm on a side
with a center-to-center spacing of 0.01 mm. Each point spread function was obtained by tracing 20,00( rays.

Table 1

Astigmatism Defocus

Object plane distance 48.6 48.6
Image plane distance 50.4 51.0

Focal length 24.3 24.3
F-number 5.70 4.00

Tangential field-angle 5.91 0.(X)
Sagittal field-angle 0.00 0.(X)



On the top line, center diagram, of Figs.1 and 2 are mesh plots of the two of the point spread functions considered.
Each point spread function p(x,y) is represented by a 31-by-31 matrix. The ideal extended object o(x,y) used in this
analysis was a 256-by-256 matrix which is displayed as an 8-bit gray-level diagram in the upper-left hand corner of
each of these figures. Performing a two-dimensional convolution, see Eq.(35), of the extended object with the point
spread function (in the absence of noise) yields a 286-by-286 degraded image i(x,y) of which the central 256-by-256
portion of the degraded image is shown in the upper-right hand corner of each of these figures. The full 286-by-286
matrix is used, however, in subsequent image processing computations.

On line two of each of these figures are mesh plots of the inverse point spread functions (31-by-31 matrices)
dlj(x,y) (left-diagram) and w 7(x, y) (right-diagram) obtained using the RAPID and Wiener filter algorithms,
respectively. Performing a two-dimensional convolution of the point spread function p(x,y) with each of the inverse
point spread functions dp(x,y) and w (x, y) yields processed point spread functions (61-by-61 matrices). The
central 31-by-31 portions of these processed point spread functions are shown as mesh plots on line three (left- and
right-diagrams, respectively). For purposes of comparison, a 31-by-31 null-array with a single non-zero entry for the
center pixel (Delta) is also displayed on line three, center diagram.

The values of the regularization parameters, [3 and 'y, which gave rise to the best processed point spread functions,-- 3 - 2 -4 -_
judged visually, for this analysis are: astigmatism, 2x10 and2x10 , and defocus, 5x10 and lx10 -. These same
regularization parameter values were used in computing the object estimates 6P (x, y) and 6y(x, y) using Eqs. (37)
and (42), respectively. These object estimates (316-by-316 processed images) are displayed as gray-level diagrams on
the bottom-line of each of these figures. Only the central 256-by-256 portions of the processed images are shown.

The results presented in Figs. I and 2 were based on studies using synthesized point spread functions. We were
fortunate to obtain real digitized degraded images of the planet Saturn taken with the wide-field planetary camera of
the Hubble Space Telescope. The tipper diagram in Fig. 3 shows a 400-by-250 degraded (unprocessed) image of the
planet Saturn. Here the point spread function is weakly space-variant. Approximate allowance can be made for its
variation across the image of Saturn by using the images of two stars in the same part of the field-of-view, obtained
with the telescope on another occasion. The second line in Fig. 3 shows the 31-by-31 degraded images of these two
stars (called star #1 and star #2). The RAPID algorithm was used to process the degraded image of Saturn using the star
images as point spread functions characterizing the degradation process. In particular, star #1 image was used as the
input point spread function. Both star #1 and star #2 images were first processed using the inverse point spread
function obtained using the star #1 image only. The regularization parameter, [3, selected was the one which gave rise
to processed star images of equal quality, based on a minimum entropy criterion. The entropy of the normalized image
is -Y1p.llogp..q where p.. is the content of the ij th pixel. This same inverse point spread function was then used, via
Eq.(37), to process the degraded Saturn image. The size of the reconstructed image was 430-by-280. The central 400-by-
250 portion of this reconstruction is shown in the lower diagram of Fig.3.

9. RADAR IMAGE RECONSTRUCTION

Microwave radar signal processing is a well-established field2 5 in which the role of the matched filter is pre-
eminent. More recently, microwave imaging radars have become important for terrain mapping not only of the earth 26

but also of other planetary objects 27 . Most terrain-mapping radars are of the synthetic aperture type; the ground is
assumed to be stationary and the radar is assumed to move relative to it with a known motion, so that the radar return
can be processed simultaheously in range and Doppler. After pulse compression, radar ra nge (sla nt range) can le
w.on,.crf', to range along the ground using the assumed orientation of the radar with respect to the ground. After



Doppler processing, cross-range can be computed from the processed signals. In a simple side-looking synthetic
aperture radar, such as is used in commercial aircraft ground mapping, range and Doppler processing may be
performed independently and the point spread function of the imaging radar treated as separable. Under these
conditions, image formation can be viewed as a Kronecker product of two one-dimensional processes. In a paper
presented at the first conference in this series 28' an image restoration technique for a synthetic aperture radar system,
based on the regularized pseudoinverse of the imaging operator, was considered.

In this paper, we discuss an inverse synthetic aperture laser radar example, for which the target will be modeled as
a doubly-spread (in range and Doppler) extended object. We will initially assume that a monostatic laser radar system
is looking into space at a distribution of reflecting spheres of various sizes at different ranges and associated with
different Doppler frequencies. It is reasonable to assume also that the target of the laser radar is rough relative to the
illuminating radiation wavelength. This assumption is approximately true even for microwave radars operating in a
planetary-mapping mode 27. Following Van Trees' standard statistical radar/sonar model29, the return is assumed to be
a Gaussian random variable. The detection statistic used is the log-likelihood function and is equal to the magnitude
squared output of a bandpass-matched filter or correlator.

For those unfamiliar with the mathematical formalism describing the properties and performance of a radar

system, we introduce some terminology. The traditional approach to modeling the radar image is via the asymmetric
ambiguity function 29:

00

x(v, t) = z* (t)z(t + T)exp(+i2rtvt)itt (43)

where z (t) = s (t) + if (t) and (t) denotes the Hilbert transform of s (t) and t and v represent delay and
Doppler shift. This narrowband ambiguity function may be viewed as the response of either a matched filter receiver
to a point scatterer as a function of the target delay and Doppler shift, or a bank of matched filters to a point scatterer at
one particular delay and Doppler shift. The symmetric form of this ambiguity function is

C00

A (v,'t) = exp(+ivrtv')x(v,[) = z*(t)- z(t+)exp(+i2rnvt)dt. (44)

-00

Feig and Grfinbaum3 ° have made use of the symmetric ambiguity function to demonstrate the connection between
radar detection and tomography. Bernfeld 31 first recognized the analogy between tile ambiguity function (more
precisely, its squared modulus) and certain mathematical entities appearing in the equations governing x-ray
tomnographic data. Snyder et al.32 noted the analogy with time-of-flight positron emission tomography. ISee also ref.
33.1 Whitehouse and Boashash 34 established a related analogy between the radar image and that obtained by time-of-
flight positron emission tomography for the bistatic case, where the phase of the transmitted signal is not needed.

The Wigner-Ville distribution (WVD) of a real signal s(t), associated with the complex analytic signal z(t), is a time-
frequency distribution defined as-'-

00

W(tf) Z (~t + ) t- -)exp(-i2nft) . (45)



Note that the WVD is the double Fourier transform of the symmetric ambiguity function. The WVD is always real,
wý'hereas the ambiguity function is in general complex. For a given signal, the WVD is related to the squared modulus
of the ambiguity function by a double convolution 35 :

W** W = AI2  (46)

As stated above, the radar return is assumed to be a Gaussian random variable, and the detection statistic used is the
log-likelihood function. Under this stochastic treatment of the radar reflection, the determination of tile target's
scattering function a becomes a problem in deconvolution:

E (IXsr 2) = lXssl2V**a (47)

where E is the expectation operator, s denotes the transmitted signal, r denotes the received signal and Xsr is the cross-
ambiguity function between transmitted and received signals:

00

Xsr(v,t) = s* (t) r(t+t)exp(+i2tvt)dt. (48)

-00

Thus we can see from Eq.(47) that the known function IXs5sl2 plays the role of the point spread function in the radar
imaging caýc.TIhe radar deconvolution problem can also be stated in the closely-related form'6:

E (Wr) = Ws **-F (49)

where Ws and W are the WVDs of the transmitted and received signals respectively. A consistent estimator for this
s r'

equation is discussed in Appendix A.

We observe that the total energy, E, in the ambiguity function is
00 00

E = J'JJA (v, T) 12 dr(5o)

-00-00

and that JAIl2 possesses the self-transform property2 5 :

-00-00

We also note an important distinction between the optical and radar cases. The resolution of a corrected optical
system of modest F-number (ratio of focal length to objective diameter) can be improved simply by increasing the
aperture. Suppose an iris is illuminated by a point source whose radiant inltensity can be adjusted to maintain the
power passing through the aperture at a constant level. As the diameter of the iris increases, the central peak of the
point spread function 37 becomes both higher and narrower; the height increases in proportion to the area of the
aperture while the width decreases in proportion to its diameter. Note that the contribution of the volume (f the central
peak relative to the integrated sidelobes remains constant. For the radar ssteni, on the other hand, it can be shown
that, for a constant-energy signal of increasing time-bandwidth product, the width of the central peak in the ambiguity
function decreases, while its magnitude remains constant and the integrated v\olumrne under the sidelobes increases.



Thus, radar systems become increasingly aberrated as the time-bandwidth product increases, and we are obliged to
resort to post-processing of the data to maintain feature contrast as we increase the resolution for distributed objects.

This situation brings to mind the Hubble wide-field planetary camera, whose design resolution was achieved, but

whose performance was degraded by the enlargement of the point spread function sidelobes through severe spherical

aberration.

10. APPLICATION TO THE RADAR CASE

As an illustration of the application of the ideas discussed here to the radar case, we consider the ambiguity

function associated with a laser radar system38 radiating pulses with Gaussian envelopes. The ambiguity function is

then a two-dimensional Gaussian. Since the WVD of the signal is also a two-dimensional Gaussian, the computation

involved in the image restoration procedure has exactly the same form for both Eqs.(4 7 ) and (49). The computer

software used in generating the simulation results in Figs. I and 2 was applied to the case of a circularly symmetric

Gaussian point spread function. The results of this simulation are summarized in Fig.4.
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Figure 1. Point Spread Function Dominated by Astigmatism
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APPENDIX A - A CONSISTENT ESTIMATION FOR WVI) RA1)AR IMAGING

Consider the radar deconvolution problem represented by Eq.(49). This equation assumes the expected value of
!he WV\D of the received signal is known. This appendix discusses consistent L-timmion for this equation using a
pulse-averaging scheme, but depends on substantial statistical assumptions regarding the random field of radar
reflectors.

Under the assumptions outlined in Section 9, the received signal { r (t) } is a s•ochasticallv filtered version of the
transmitted signal { s (t) I (Eq. (8) of 1361):

r (t) = f j D (x, y) s (t - x) exp [+i2 yitl dxdy. (A l)

Here D(x,y) denotes the random field determined by the reflectivity coefficient of the scatterers as a function of radial
range x and radial Doppler y. For ease of exposition, we are assuming both { r (t) } and s (t) I are analytic and have
subsumed a deterministic phase term in D(x,y). Then the WVD for the received signal has the form:

0000 00 00 00

TtW (t, fj D(x1,y )D*(x).,yj)s(t+- s* -

(A2)
-0 00 ý00 00-0

CxpF+i2ricy (t + ;)jLexp[2rY2 (t- Q xp [-i21cf't1 ,x 1d 1/dX.dYdt.

The reflectivity field is assumed to be independent in range and Doppler:

E [D (xl, D* -x X -50 _y'. (A 3)
,yD(x 2,'Y 2 )] =a (xl, y)S(x1 x216( ,1 -y2 )

By taking the expectation of Eq. (A2) and using the covariance of D(x,y) in Eq. (A3), it is straight-forward to obtain

Eq.(49):

00

FIIV .(1, 1) 1 J' T (X, y) IV (I - X. f - Y) i~XIII/= IV. * 7 * 1 f) .!)

-00-00

It is one thing to write down an expectation and quite another to have a consistent estimator. The remainder of this
appendix considers a pulse-averaging estimator for Eq. (49). Suppose N time-delayed pulses are transmitted so that the
nth received waveform is given by

0 00

r n(t) = f D n(x, y) exp I+i2ryt)s n (t-)dxd, 05)
S(\5



where the nth pulse is s ( t) = s (t - tn) and the associated random fields Dn (x, y) satisfy:

(0-1) Each Dn (xy) is a zero-mean, circularGaussian random field.

(D-2) The sequence { Dn (x, y) I is independent and identically distributed with respect to n.

(D-3) Each Dn (x, y) exhibits zero correlation with respect to x and y.

Assumptions (D-1), (D-2), and (D-3) imply that Eq.(A3) holds for each Dn (x, y) for a single scattering function
a (that is, ca = a n ) while the expectation between fields is zero: E [Dn (x 1 , y1) D *(x2,y 2 ) ] = 0 for m # n.

Consider averaging of time-delayed WVD of these received pulses:

N

1lW (N; t, f) = 1 Wt~~) (A6)

n = I

It is straight-forward to verify that the mean of this estimator is

E[W(N;t,f)] = [Ws**a] (t,f). (A7)

The covariance computation is more involved but it can be bounded:

1COV[W(N;tlIfl)" W(N;t2f)11: 4 NIsý)2 X I) a)) 2 (A8)

Thus, W(N;tf) is a consistent estimator for Eq. (49) as N - o-, provided the transmitted signal belongs to L2 (9) and the
scattering function a belongs to L(1 (Ox9). While W(N;t,f) is consistent, note that assumption (D-2) begins to break

down for large N. Indeed, while each Dn (x, y) may still be Gaussian and independent with respect to n, it seems
unlikely that the associated scattering functions could be identical as N -) oo. It is conjectured, for a frequency

independent reflectivity coefficient, that an alternative consistent estimator can be obtained by averaging the WVDs of

an ensemble of frequency shifted pulses in a manner similar to Eq.(A6). This frequency averaged estimator should

overcome the difficulty of accounting for the non-stationarity of the stochastic reflectivity field due to the motion in

range of the scatterers during the observation interval of the en.,mble.


